亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TAT: Targeted backdoor attacks against visual object tracking

后门 计算机科学 人工智能 计算机视觉 BitTorrent跟踪器 计算机安全 眼动
作者
Zimeng Cheng,Baoyuan Wu,Zhenya Zhang,Jianjun Zhao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:142: 109629-109629 被引量:1
标识
DOI:10.1016/j.patcog.2023.109629
摘要

Visual object tracking (VOT) is a fundamental computer vision task that aims to track a target in a sequence of video frames. It has been broadly adopted in safety- and security-critical applications, such as self-driving systems and traffic control systems. However, the VOT models (i.e., the trackers) that rely on third-party training resources face a severe threat of backdoor attacks, which refer to the type of the attacks that poison a portion of training data and mislead the tracker to track a wrong target. A surge of research interest has arisen in backdoor attacks in the domain of image classification, as a measure to expose the potential security risks of the classifiers and inspire new defense techniques. Despite the prosperity of the research in backdoor attacks in image classification, there still lacks investigation in backdoor attacks against VOT, due to their unique challenges: first, the architecture of a VOT model is much more complicated than that of an image classifier; second, VOT targets a sequence of video frames rather than individual images. To bridge the gap, we propose a novel and effective targeted backdoor attack approach TAT specifically against VOT tasks. In particular, TAT includes a basic version TAT-BA that can achieve effective and stealthy backdoor attacks against VOT trackers, and an advanced version TAT-DA that can evade two representative defense techniques. Our large-scale experimental evaluation demonstrates the effectiveness and the stealthiness of TAT. Moreover, we also demonstrate the performances of TAT-BA under real-world settings and the abilities of TAT-DA to counter defense techniques. The code will be available at https://github.com/MisakaZipi/TAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
能干的语芙完成签到 ,获得积分10
5秒前
25秒前
Akim应助Lrdal采纳,获得10
30秒前
打工人不酷完成签到 ,获得积分10
33秒前
35秒前
ZWTH完成签到,获得积分10
36秒前
37秒前
量子星尘发布了新的文献求助10
40秒前
CoCoco完成签到 ,获得积分10
41秒前
wynne313完成签到 ,获得积分10
42秒前
destiny发布了新的文献求助10
42秒前
隐形曼青应助destiny采纳,获得10
59秒前
1111完成签到,获得积分20
1分钟前
Lrdal发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Dandelion发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ylan发布了新的文献求助10
1分钟前
1分钟前
boya发布了新的文献求助10
1分钟前
1分钟前
AAA发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
sasa完成签到 ,获得积分10
1分钟前
美味的章鱼小丸子完成签到,获得积分20
2分钟前
赵子龙完成签到,获得积分10
2分钟前
boya完成签到,获得积分10
2分钟前
赵李艺完成签到 ,获得积分10
2分钟前
asdfqwer完成签到 ,获得积分0
2分钟前
2分钟前
LiH发布了新的文献求助10
2分钟前
春鸮鸟完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ridy发布了新的文献求助80
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865688
求助须知:如何正确求助?哪些是违规求助? 3408190
关于积分的说明 10656975
捐赠科研通 3132192
什么是DOI,文献DOI怎么找? 1727486
邀请新用户注册赠送积分活动 832328
科研通“疑难数据库(出版商)”最低求助积分说明 780220