A Swin Transformer-Based Model for Thyroid Nodule Detection in Ultrasound Images

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 甲状腺结节 变压器 计算机视觉 甲状腺 医学 量子力学 物理 内科学 电压
作者
Ye Tian,Jingqiang Zhu,Lei Zhang,Lichao Mou,Xiao Xiang Zhu,Yilei Shi,Buyun Ma,Wanjun Zhao
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (194) 被引量:4
标识
DOI:10.3791/64480
摘要

In recent years, the incidence of thyroid cancer has been increasing. Thyroid nodule detection is critical for both the detection and treatment of thyroid cancer. Convolutional neural networks (CNNs) have achieved good results in thyroid ultrasound image analysis tasks. However, due to the limited valid receptive field of convolutional layers, CNNs fail to capture long-range contextual dependencies, which are important for identifying thyroid nodules in ultrasound images. Transformer networks are effective in capturing long-range contextual information. Inspired by this, we propose a novel thyroid nodule detection method that combines the Swin Transformer backbone and Faster R-CNN. Specifically, an ultrasound image is first projected into a 1D sequence of embeddings, which are then fed into a hierarchical Swin Transformer. The Swin Transformer backbone extracts features at five different scales by utilizing shifted windows for the computation of self-attention. Subsequently, a feature pyramid network (FPN) is used to fuse the features from different scales. Finally, a detection head is used to predict bounding boxes and the corresponding confidence scores. Data collected from 2,680 patients were used to conduct the experiments, and the results showed that this method achieved the best mAP score of 44.8%, outperforming CNN-based baselines. In addition, we gained better sensitivity (90.5%) than the competitors. This indicates that context modeling in this model is effective for thyroid nodule detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助阳光的醉香采纳,获得10
刚刚
小二郎应助eee采纳,获得10
1秒前
z7完成签到,获得积分10
1秒前
蹄子发布了新的文献求助10
1秒前
情怀应助xingxing采纳,获得10
1秒前
JamesPei应助嘴巴张大一点采纳,获得10
1秒前
holi完成签到 ,获得积分10
1秒前
哈哈哈完成签到,获得积分20
2秒前
blablawindy完成签到,获得积分10
2秒前
achulw发布了新的文献求助10
2秒前
3秒前
岩崖应助加油采纳,获得10
3秒前
兜有米完成签到,获得积分10
3秒前
ycx发布了新的文献求助10
4秒前
咕噜咕噜发布了新的文献求助10
4秒前
5秒前
外向的小甜瓜完成签到 ,获得积分10
5秒前
今后应助灵巧书本采纳,获得10
5秒前
5秒前
标致的坤完成签到,获得积分10
6秒前
清爽灰狼完成签到,获得积分10
7秒前
嘴巴张大一点完成签到,获得积分10
7秒前
Zjj完成签到,获得积分10
7秒前
7秒前
斯文败类应助123采纳,获得10
8秒前
招财进宝宝完成签到 ,获得积分20
9秒前
9秒前
Jasper应助asdfg123采纳,获得10
9秒前
ry发布了新的文献求助10
9秒前
10秒前
叽叽叽发布了新的文献求助10
10秒前
11秒前
ljf完成签到,获得积分20
11秒前
11秒前
陈威东发布了新的文献求助10
12秒前
wwww111关注了科研通微信公众号
12秒前
小吴同学来啦完成签到,获得积分10
13秒前
蹄子完成签到,获得积分10
13秒前
13秒前
冷酷鱼完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520913
求助须知:如何正确求助?哪些是违规求助? 3963079
关于积分的说明 12283471
捐赠科研通 3626648
什么是DOI,文献DOI怎么找? 1995825
邀请新用户注册赠送积分活动 1032143
科研通“疑难数据库(出版商)”最低求助积分说明 922326