A Swin Transformer-Based Model for Thyroid Nodule Detection in Ultrasound Images

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 甲状腺结节 变压器 计算机视觉 甲状腺 医学 量子力学 物理 内科学 电压
作者
Ye Tian,Jingqiang Zhu,Lei Zhang,Lichao Mou,Xiao Xiang Zhu,Yilei Shi,Buyun Ma,Wanjun Zhao
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (194) 被引量:4
标识
DOI:10.3791/64480
摘要

In recent years, the incidence of thyroid cancer has been increasing. Thyroid nodule detection is critical for both the detection and treatment of thyroid cancer. Convolutional neural networks (CNNs) have achieved good results in thyroid ultrasound image analysis tasks. However, due to the limited valid receptive field of convolutional layers, CNNs fail to capture long-range contextual dependencies, which are important for identifying thyroid nodules in ultrasound images. Transformer networks are effective in capturing long-range contextual information. Inspired by this, we propose a novel thyroid nodule detection method that combines the Swin Transformer backbone and Faster R-CNN. Specifically, an ultrasound image is first projected into a 1D sequence of embeddings, which are then fed into a hierarchical Swin Transformer. The Swin Transformer backbone extracts features at five different scales by utilizing shifted windows for the computation of self-attention. Subsequently, a feature pyramid network (FPN) is used to fuse the features from different scales. Finally, a detection head is used to predict bounding boxes and the corresponding confidence scores. Data collected from 2,680 patients were used to conduct the experiments, and the results showed that this method achieved the best mAP score of 44.8%, outperforming CNN-based baselines. In addition, we gained better sensitivity (90.5%) than the competitors. This indicates that context modeling in this model is effective for thyroid nodule detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zheng完成签到 ,获得积分10
7秒前
追寻惋清完成签到 ,获得积分10
12秒前
fwl完成签到 ,获得积分10
15秒前
15秒前
了晨完成签到 ,获得积分10
16秒前
钱塘郎中完成签到,获得积分0
16秒前
吃饱了就晒太阳完成签到,获得积分10
17秒前
小灰灰完成签到,获得积分0
17秒前
王妍完成签到 ,获得积分10
17秒前
小米的稻田完成签到 ,获得积分10
19秒前
zhang完成签到 ,获得积分10
20秒前
maclogos发布了新的文献求助10
21秒前
xiayu完成签到 ,获得积分10
25秒前
Orange应助meng采纳,获得30
28秒前
Owen应助摩登灰太狼采纳,获得10
30秒前
moroa完成签到,获得积分10
32秒前
35秒前
王道远发布了新的文献求助100
35秒前
王旭东完成签到 ,获得积分10
36秒前
Graham完成签到,获得积分10
36秒前
38秒前
Aurora完成签到 ,获得积分10
39秒前
cs发布了新的文献求助10
39秒前
zsj完成签到,获得积分10
39秒前
花盛完成签到,获得积分10
40秒前
40秒前
42秒前
英俊的如霜完成签到,获得积分10
42秒前
43秒前
科研浩完成签到 ,获得积分10
50秒前
hyxu678完成签到,获得积分10
51秒前
cdercder应助科研通管家采纳,获得10
52秒前
52秒前
四然应助科研通管家采纳,获得10
52秒前
xzn1123应助科研通管家采纳,获得10
52秒前
JTHe应助科研通管家采纳,获得10
52秒前
Xiaoxiao应助科研通管家采纳,获得10
52秒前
orixero应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
孤独从云应助科研通管家采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206543
捐赠科研通 3036730
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841