亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cell membrane mechanics using a simple to fabricate microwell chip and deep learning-assisted automated AFM analysis

纳米技术 原子力显微镜 材料科学 简单(哲学) 炸薯条 深度学习 计算机科学 人工智能 化学 电信 哲学 生物化学 认识论
作者
Nicholas Hallfors,Charalampos Lamprou,Shaohong Luo,Sarah Alkhatib,Jiranuwat Sapudom,Cyril Aubry,Jawaher Alhammadi,Vincent Chan,Cesare Stefanini,Jeremy Teo,Leontios J. Hadjileontiadis,Anna‐Maria Pappa
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4963823/v1
摘要

Abstract Atomic Force Microscopy (AFM) being inherently slow and analysis heavy, becomes challenging for scaling up. Addressing this, we take a two-fold approach; first we introduce an easy-to-fabricate reusable poly(dimethylsiloxane)-based array that consists of micron-sized traps for single-cell trapping and second, we apply a deep-learning method directly on the extracted curves to facilitate and automate the analysis. Our approach is validated using suspended cells which often require specific holders or adhesive molecules due to their tendency to slip from the surface. Using nanoindentation, cell cortex stiffness alterations, under the influence of three different drugs that inhibit myosin activity, are revealed. We then apply machine learning models to extract membrane stiffness directly from the raw data as well for binary (presence/absence of drugs) and multiclass classification (different drug types). The proposed analysis resulted in a Coefficient of Determination of 0.47 for the regression problem while for the binary and multiclass classification the analysis resulted in an Area Under the Curve score of 0.91 and accuracy scores exceeding 0.9 respectively, for each individual drug class. Overall, the versatility to fabricate the microwells in conjunction with the automated analysis and classification could find wide-range applications spanning from to basic cell-based assays to drug screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助彩色幼南采纳,获得10
2秒前
4秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
xin完成签到,获得积分10
25秒前
27秒前
34秒前
36秒前
henxi发布了新的文献求助10
42秒前
45秒前
wack完成签到,获得积分10
1分钟前
1分钟前
wack发布了新的文献求助10
1分钟前
1分钟前
Chemberry发布了新的文献求助10
1分钟前
可爱的函函应助mar采纳,获得10
1分钟前
Chemberry完成签到,获得积分10
1分钟前
7788完成签到,获得积分10
1分钟前
1分钟前
mar发布了新的文献求助10
1分钟前
mar完成签到,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
我亦化身东海去完成签到 ,获得积分10
3分钟前
无极2023完成签到 ,获得积分0
3分钟前
4分钟前
桐桐应助科研通管家采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Akim应助henxi采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792477
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281935
捐赠科研通 3053462
什么是DOI,文献DOI怎么找? 1675647
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468