已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cell membrane mechanics using a simple to fabricate microwell chip and deep learning-assisted automated AFM analysis

纳米技术 原子力显微镜 材料科学 简单(哲学) 炸薯条 深度学习 计算机科学 人工智能 化学 生物化学 电信 认识论 哲学
作者
Nicholas Hallfors,Charalampos Lamprou,Shaohong Luo,Sarah Alkhatib,Jiranuwat Sapudom,Cyril Aubry,Jawaher Alhammadi,Vincent Chan,Cesare Stefanini,Jeremy Teo,Leontios J. Hadjileontiadis,Anna‐Maria Pappa
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4963823/v1
摘要

Abstract Atomic Force Microscopy (AFM) being inherently slow and analysis heavy, becomes challenging for scaling up. Addressing this, we take a two-fold approach; first we introduce an easy-to-fabricate reusable poly(dimethylsiloxane)-based array that consists of micron-sized traps for single-cell trapping and second, we apply a deep-learning method directly on the extracted curves to facilitate and automate the analysis. Our approach is validated using suspended cells which often require specific holders or adhesive molecules due to their tendency to slip from the surface. Using nanoindentation, cell cortex stiffness alterations, under the influence of three different drugs that inhibit myosin activity, are revealed. We then apply machine learning models to extract membrane stiffness directly from the raw data as well for binary (presence/absence of drugs) and multiclass classification (different drug types). The proposed analysis resulted in a Coefficient of Determination of 0.47 for the regression problem while for the binary and multiclass classification the analysis resulted in an Area Under the Curve score of 0.91 and accuracy scores exceeding 0.9 respectively, for each individual drug class. Overall, the versatility to fabricate the microwells in conjunction with the automated analysis and classification could find wide-range applications spanning from to basic cell-based assays to drug screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助xio采纳,获得10
1秒前
朴素的飞丹完成签到 ,获得积分10
1秒前
小雨发布了新的文献求助10
2秒前
L同学完成签到,获得积分10
2秒前
3秒前
almost完成签到,获得积分10
3秒前
傅立叶完成签到,获得积分10
4秒前
Gardener发布了新的文献求助10
4秒前
4秒前
5秒前
Lucas应助阿哈采纳,获得10
6秒前
科研通AI6应助滴迪氐媂采纳,获得10
6秒前
情怀应助kk采纳,获得10
7秒前
8秒前
doctor杨发布了新的文献求助10
8秒前
almost发布了新的文献求助10
8秒前
NexusExplorer应助燕子采纳,获得10
8秒前
Kirito完成签到,获得积分0
9秒前
羊羊完成签到,获得积分10
9秒前
孤独白拍完成签到,获得积分10
10秒前
朴实惜霜发布了新的文献求助10
11秒前
11秒前
12秒前
太阳花发布了新的文献求助30
17秒前
乐乐应助weiyu采纳,获得10
18秒前
yznfly应助木草采纳,获得30
18秒前
WXR0721完成签到,获得积分10
23秒前
24秒前
24秒前
舒适凝阳发布了新的文献求助10
25秒前
完美世界应助Gardener采纳,获得10
25秒前
27秒前
赘婿应助潇洒荧荧采纳,获得10
27秒前
镓氧锌钇铀应助摆烂包菜采纳,获得20
28秒前
weiyu完成签到,获得积分10
29秒前
zhang发布了新的文献求助10
29秒前
xxfsx应助科研通管家采纳,获得10
29秒前
邓佳鑫Alan应助科研通管家采纳,获得10
29秒前
邓佳鑫Alan应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919