亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Emerging Research Trends in Artificial Intelligence for Cancer Diagnostic Systems: A Comprehensive Review

人工智能 可解释性 机器学习 计算机科学 深度学习 数据科学 特征选择 大数据 预处理器 数据挖掘
作者
Sagheer Abbas,Muhammad Waqas Asif,Abdur Rehman,Meshal Alharbi,Muhammad Adnan Khan,Nouh Sabri Elmitwally
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (17): e36743-e36743 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e36743
摘要

This review article offers a comprehensive analysis of current developments in the application of machine learning for cancer diagnostic systems. The effectiveness of machine learning approaches has become evident in improving the accuracy and speed of cancer detection, addressing the complexities of large and intricate medical datasets. This review aims to evaluate modern machine learning techniques employed in cancer diagnostics, covering various algorithms, including supervised and unsupervised learning, as well as deep learning and federated learning methodologies. Data acquisition and preprocessing methods for different types of data, such as imaging, genomics, and clinical records, are discussed. The paper also examines feature extraction and selection techniques specific to cancer diagnosis. Model training, evaluation metrics, and performance comparison methods are explored. Additionally, the review provides insights into the applications of machine learning in various cancer types and discusses challenges related to dataset limitations, model interpretability, multi-omics integration, and ethical considerations. The emerging field of explainable artificial intelligence (XAI) in cancer diagnosis is highlighted, emphasizing specific XAI techniques proposed to improve cancer diagnostics. These techniques include interactive visualization of model decisions and feature importance analysis tailored for enhanced clinical interpretation, aiming to enhance both diagnostic accuracy and transparency in medical decision-making. The paper concludes by outlining future directions, including personalized medicine, federated learning, deep learning advancements, and ethical considerations. This review aims to guide researchers, clinicians, and policymakers in the development of efficient and interpretable machine learning-based cancer diagnostic systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22myzhang2发布了新的文献求助10
2秒前
14秒前
可爱的函函应助Panda2022采纳,获得10
16秒前
DDL完成签到,获得积分10
17秒前
伊笙完成签到 ,获得积分10
18秒前
DDL发布了新的文献求助10
19秒前
hugeyoung完成签到,获得积分10
36秒前
春天的粥完成签到 ,获得积分10
45秒前
研友_LBRPOL完成签到 ,获得积分10
1分钟前
1分钟前
英勇的半兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
华仔应助科研通管家采纳,获得30
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
慕青应助强仔爱写文章采纳,获得10
1分钟前
Sean完成签到 ,获得积分10
2分钟前
CipherSage应助22myzhang2采纳,获得10
2分钟前
慕青应助Lipeng采纳,获得10
2分钟前
3分钟前
体贴的小susu完成签到,获得积分10
3分钟前
22myzhang2发布了新的文献求助10
3分钟前
3分钟前
boxodo发布了新的文献求助40
3分钟前
义气雁完成签到 ,获得积分10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
4分钟前
Dannnn发布了新的文献求助10
4分钟前
4分钟前
Lipeng发布了新的文献求助10
4分钟前
meow完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助感动白开水采纳,获得10
5分钟前
豆豆发布了新的文献求助10
5分钟前
感动白开水完成签到,获得积分10
5分钟前
万能图书馆应助bzg采纳,获得10
5分钟前
努力的淼淼完成签到 ,获得积分10
5分钟前
球球子完成签到,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777597
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212752
捐赠科研通 3038301
什么是DOI,文献DOI怎么找? 1667298
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758215