Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助xinyuzhang采纳,获得10
3秒前
5秒前
7秒前
10秒前
11秒前
11秒前
12秒前
大q发布了新的文献求助10
12秒前
Becky666发布了新的文献求助20
14秒前
15秒前
高兴立轩发布了新的文献求助10
16秒前
嗨害害发布了新的文献求助10
17秒前
17秒前
大q完成签到,获得积分10
19秒前
Leo_Sun完成签到,获得积分10
19秒前
洛洛发布了新的文献求助10
19秒前
Moonlight完成签到 ,获得积分10
20秒前
22秒前
无极微光应助仙林AK47采纳,获得20
24秒前
LiuZhe发布了新的文献求助50
25秒前
艾妮吗完成签到,获得积分10
27秒前
29秒前
datiemen发布了新的文献求助10
30秒前
31秒前
31秒前
生发完成签到,获得积分10
31秒前
xinyuzhang发布了新的文献求助10
35秒前
Nott发布了新的文献求助10
35秒前
Lismart完成签到,获得积分10
36秒前
38秒前
嗨害害完成签到 ,获得积分10
38秒前
39秒前
42秒前
42秒前
datiemen完成签到,获得积分10
44秒前
44秒前
茸易发布了新的文献求助10
45秒前
46秒前
危机的茗发布了新的文献求助10
47秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5843080
求助须知:如何正确求助?哪些是违规求助? 6178412
关于积分的说明 15611047
捐赠科研通 4960144
什么是DOI,文献DOI怎么找? 2674189
邀请新用户注册赠送积分活动 1619000
关于科研通互助平台的介绍 1574208