Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzbbzz发布了新的文献求助10
2秒前
跳跃小伙完成签到 ,获得积分10
2秒前
supertkeb完成签到,获得积分10
2秒前
子非鱼发布了新的文献求助10
2秒前
3秒前
6秒前
7秒前
科研通AI2S应助iuv采纳,获得10
8秒前
9秒前
大肥猫发布了新的文献求助10
11秒前
栗子糕完成签到,获得积分10
11秒前
无花果应助Dragon3rd采纳,获得30
13秒前
玄之又玄发布了新的文献求助10
13秒前
14秒前
mimimi完成签到,获得积分10
14秒前
77完成签到,获得积分10
14秒前
毛毛完成签到,获得积分10
15秒前
15秒前
CAOHOU应助西行龟采纳,获得10
16秒前
wanci应助科研侠采纳,获得10
18秒前
19秒前
22秒前
巨小俊完成签到,获得积分10
22秒前
求大佬帮助完成签到,获得积分10
23秒前
24秒前
24秒前
G1997发布了新的文献求助10
25秒前
zsj发布了新的文献求助10
25秒前
pretty被发布了新的文献求助10
27秒前
852应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
邓佳鑫Alan应助科研通管家采纳,获得10
28秒前
邓佳鑫Alan应助科研通管家采纳,获得10
28秒前
邓佳鑫Alan应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
28秒前
邓佳鑫Alan应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921731
求助须知:如何正确求助?哪些是违规求助? 3466532
关于积分的说明 10943252
捐赠科研通 3195024
什么是DOI,文献DOI怎么找? 1765519
邀请新用户注册赠送积分活动 855604
科研通“疑难数据库(出版商)”最低求助积分说明 794913