亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
17秒前
欧高完成签到 ,获得积分10
20秒前
庄严发布了新的文献求助10
21秒前
自然如松完成签到 ,获得积分10
31秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
38秒前
48秒前
58秒前
1分钟前
1分钟前
英姑应助庄严采纳,获得10
1分钟前
1分钟前
1分钟前
鲜艳的曼香完成签到,获得积分20
1分钟前
shangtaomao发布了新的文献求助30
1分钟前
人间天堂发布了新的文献求助20
1分钟前
1分钟前
芒果发布了新的文献求助10
1分钟前
shangtaomao完成签到,获得积分20
2分钟前
2分钟前
栗爷完成签到,获得积分10
2分钟前
庄严发布了新的文献求助10
2分钟前
Adc应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
无尾熊完成签到 ,获得积分10
3分钟前
整齐芝麻应助oleskarabach采纳,获得10
3分钟前
KongXY完成签到 ,获得积分10
4分钟前
4分钟前
神勇的天问完成签到 ,获得积分10
4分钟前
perfect完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5840012
求助须知:如何正确求助?哪些是违规求助? 6146498
关于积分的说明 15604559
捐赠科研通 4957647
什么是DOI,文献DOI怎么找? 2672616
邀请新用户注册赠送积分活动 1617550
关于科研通互助平台的介绍 1572608