Private Optimal Inventory Policy Learning for Feature-Based Newsvendor with Unknown Demand

报童模式 特征(语言学) 库存管理 需求预测 计算机科学 经济 运筹学 微观经济学 业务 运营管理 供应链 营销 数学 语言学 哲学
作者
Tuoyi Zhao,Wen‐Xin Zhou,Lan Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2023.01268
摘要

The data-driven newsvendor problem with features has recently emerged as a significant area of research, driven by the proliferation of data across various sectors such as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of customer or organizational data often used in feature-based analysis, it is crucial to ensure individual privacy to uphold trust and confidence. Despite its importance, privacy preservation in the context of inventory planning remains unexplored. A key challenge is the nonsmoothness of the newsvendor loss function, which sets it apart from existing work on privacy-preserving algorithms in other settings. This paper introduces a novel approach to estimating a privacy-preserving optimal inventory policy within the f-differential privacy framework, an extension of the classical [Formula: see text]-differential privacy with several appealing properties. We develop a clipped noisy gradient descent algorithm based on convolution smoothing for optimal inventory estimation to simultaneously address three main challenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable privacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive finite-sample high-probability bounds for optimal policy parameter estimation and regret analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess population risk bound compared with that obtained from an indiscriminate application of existing results for general nonsmooth convex loss. Our bound aligns with that for strongly convex and smooth loss function. Our numerical experiments demonstrate that the proposed new method can achieve desirable privacy protection with a marginal increase in cost. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the National Science Foundation [Grants DMS-2113409 and DMS 2401268 to W.-X. Zhou, and FRGMS-1952373 to L. Wang]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01268 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利多卡因完成签到,获得积分10
1秒前
Me发布了新的文献求助10
1秒前
Ergou完成签到 ,获得积分10
1秒前
Phoenix发布了新的文献求助10
2秒前
烟花应助阡瓴采纳,获得10
3秒前
哒哒发布了新的文献求助10
3秒前
林林完成签到,获得积分10
4秒前
4秒前
爆米花应助动听的雪碧采纳,获得10
5秒前
6秒前
小二郎应助Chrystal_lin采纳,获得10
6秒前
6秒前
7秒前
9秒前
张欢欢发布了新的文献求助10
10秒前
哒哒完成签到 ,获得积分20
11秒前
不安青牛应助浮世清欢采纳,获得10
12秒前
kaikai晴应助wgy采纳,获得10
12秒前
12秒前
max完成签到,获得积分10
14秒前
稻草人发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
18秒前
sheep完成签到,获得积分10
19秒前
浮世清欢完成签到,获得积分20
20秒前
20秒前
21秒前
Luna发布了新的文献求助10
22秒前
容若发布了新的文献求助10
22秒前
卢莹完成签到,获得积分10
23秒前
miracle发布了新的文献求助10
24秒前
闵问柳发布了新的文献求助10
26秒前
情怀应助留胡子的书桃采纳,获得10
26秒前
27秒前
28秒前
lzl发布了新的文献求助10
29秒前
flysky120发布了新的文献求助10
30秒前
NexusExplorer应助哒哒采纳,获得10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4134714
求助须知:如何正确求助?哪些是违规求助? 3671425
关于积分的说明 11608751
捐赠科研通 3367509
什么是DOI,文献DOI怎么找? 1849978
邀请新用户注册赠送积分活动 913493
科研通“疑难数据库(出版商)”最低求助积分说明 828692