Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys

机械加工 钻石 振动 材料科学 磁场 领域(数学) 磁铁 可加工性 表面完整性 声学 机械工程 复合材料 物理 冶金 工程类 量子力学 数学 纯数学
作者
Yintian Xing,Yue Liu,Tengfei Yin,Denghui Li,Zhanwen Sun,Changxi Xue,Wai Sze Yip,Suet To
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier]
卷期号:202: 104208-104208 被引量:25
标识
DOI:10.1016/j.ijmachtools.2024.104208
摘要

Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
FashionBoy应助侯康采纳,获得10
1秒前
鲤鱼水池发布了新的文献求助10
1秒前
马先生发布了新的文献求助10
2秒前
sunny完成签到,获得积分20
2秒前
伶俐凡白完成签到,获得积分10
3秒前
肚子完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
yuanmm完成签到,获得积分10
5秒前
爆米花应助林烯采纳,获得10
5秒前
5秒前
wlx完成签到,获得积分10
5秒前
Ava应助潇洒的千山采纳,获得10
6秒前
丘比特应助高高采纳,获得30
6秒前
鲤鱼水池完成签到,获得积分10
6秒前
萨格发布了新的文献求助10
6秒前
勤劳的凝海完成签到,获得积分10
6秒前
juan发布了新的文献求助30
6秒前
mashibeo发布了新的文献求助30
7秒前
英俊的铭应助抹茶夏天采纳,获得10
7秒前
小蘑菇应助秦大帅采纳,获得10
7秒前
君君发布了新的文献求助10
7秒前
7秒前
cgliuhx发布了新的文献求助10
8秒前
李一诺完成签到 ,获得积分10
8秒前
seul完成签到,获得积分10
8秒前
flyear2022完成签到,获得积分10
9秒前
dandan发布了新的文献求助10
9秒前
9秒前
10秒前
NexusExplorer应助沐沐采纳,获得10
10秒前
10秒前
杜瑞豪发布了新的文献求助10
11秒前
还游完成签到,获得积分10
11秒前
11秒前
lei.qin完成签到 ,获得积分10
12秒前
以恒之心发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361404
求助须知:如何正确求助?哪些是违规求助? 4491627
关于积分的说明 13983260
捐赠科研通 4394439
什么是DOI,文献DOI怎么找? 2413970
邀请新用户注册赠送积分活动 1406810
关于科研通互助平台的介绍 1381360