Generalizability of Risk Stratification Algorithms for Exacerbations in COPD

恶化 医学 慢性阻塞性肺病加重期 慢性阻塞性肺病 概化理论 接收机工作特性 曲线下面积 危险分层 风险评估 重症监护医学 内科学 急诊医学 算法 统计 慢性阻塞性肺疾病急性加重期 计算机科学 计算机安全 数学
作者
Joseph Khoa Ho,Abdollah Safari,Amin Adibi,Don D. Sin,KATE JOHNSON,Mohsen Sadatsafavi,Nick Bansback,Joan L. Bottorff,Stirling Bryan,Paloma Burns,Chris Carlsten,Annalijn Conklin,Mary De Vera,Andrea S. Gershon,Samir Gupta,Paul Gustafson,Stephanie Harvard,Alison M. Hoens,Mehrshad Mokhtaran,Jim Johnson
出处
期刊:Chest [Elsevier BV]
卷期号:163 (4): 790-798 被引量:9
标识
DOI:10.1016/j.chest.2022.11.041
摘要

Contemporary management of COPD relies on exacerbation history to risk-stratify patients for future exacerbations. Multivariable prediction models can improve the performance of risk stratification. However, the clinical utility of risk stratification can vary from one population to another.How do two validated exacerbation risk prediction models (Acute COPD Exacerbation Prediction Tool [ACCEPT] and the Bertens model) compared with exacerbation history alone perform in different patient populations?We used data from three clinical studies representing populations at different levels of moderate to severe exacerbation risk: the Study to Understand Mortality and Morbidity in COPD (SUMMIT; N = 2,421; annual risk, 0.22), the Long-term Oxygen Treatment Trial (LOTT; N = 595; annual risk, 0.38), and Towards a Revolution in COPD Health (TORCH; N = 1,091; annual risk, 0.52). We compared the area under the receiver operating characteristic curve (AUC) and net benefit (measure of clinical utility) among three risk stratification algorithms for predicting exacerbations in the next 12 months. We also evaluated the effect of model recalibration on clinical utility.Compared with exacerbation history, ACCEPT showed better performance in all three samples (change in AUC, 0.08, 0.07, and 0.10, in SUMMIT, LOTT, and TORCH, respectively; P ≤ .001 for all). The Bertens model showed better performance compared with exacerbation history in SUMMIT and TORCH (change in AUC, 0.10 and 0.05, respectively; P < .001 for both), but not in LOTT. No algorithm was superior in clinical utility across all samples. Before recalibration, the Bertens model generally outperformed the other algorithms in low-risk settings, whereas ACCEPT outperformed others in high-risk settings. All three algorithms showed the risk of harm (providing lower net benefit than not using any risk stratification). After recalibration, risk of harm was mitigated substantially for both prediction models.Exacerbation history alone is unlikely to provide clinical utility for predicting COPD exacerbations in all settings and could be associated with a risk of harm. Prediction models have superior predictive performance, but require setting-specific recalibration to confer higher clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you完成签到,获得积分10
2秒前
科研通AI2S应助舒适路人采纳,获得10
2秒前
今天也是开心小刘完成签到,获得积分10
3秒前
平淡道天完成签到,获得积分10
4秒前
二樊完成签到,获得积分20
5秒前
5秒前
6秒前
9秒前
南屋发布了新的文献求助10
9秒前
陈江河发布了新的文献求助10
9秒前
合适凝雁完成签到,获得积分10
11秒前
机智的阿振完成签到,获得积分10
11秒前
13秒前
科研通AI5应助lys采纳,获得10
14秒前
科研通AI5应助舒适路人采纳,获得10
14秒前
18秒前
上官若男应助两个轮采纳,获得10
19秒前
chen发布了新的文献求助10
21秒前
稗子酿的酒完成签到 ,获得积分10
22秒前
23秒前
惟依发布了新的文献求助10
25秒前
石头发布了新的文献求助10
25秒前
25秒前
26秒前
科研通AI5应助舒适路人采纳,获得10
27秒前
小蘑菇应助CHB只争朝夕采纳,获得10
28秒前
30秒前
万能图书馆应助terry采纳,获得10
31秒前
陈江河发布了新的文献求助10
31秒前
两个轮发布了新的文献求助10
31秒前
35秒前
1523完成签到 ,获得积分10
38秒前
王一发布了新的文献求助20
38秒前
applooc完成签到,获得积分10
39秒前
Lucas应助如沐春风采纳,获得10
39秒前
123完成签到,获得积分10
41秒前
踏实的雁玉完成签到,获得积分10
42秒前
项烙发布了新的文献求助10
42秒前
xxxxxx完成签到,获得积分10
44秒前
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784187
求助须知:如何正确求助?哪些是违规求助? 3329320
关于积分的说明 10241363
捐赠科研通 3044768
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759288