Congestive Heart Failure Detection From ECG Signals Using Deep Residual Neural Network

残余物 循环神经网络 计算机科学 人工智能 人工神经网络 代表(政治) 透明度(行为) 模式识别(心理学) 深度学习 算法 政治学 计算机安全 政治 法学
作者
Eedara Prabhakararao,Samarendra Dandapat
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (5): 3008-3018 被引量:14
标识
DOI:10.1109/tsmc.2022.3221843
摘要

The early and accurate detection of congestive heart failure (CHF) using an electrocardiogram (ECG) is of great significance for improving the survival rate of patients. Existing approaches show limited detection accuracy as they fail to capture the temporal ECG dynamics. Also, these methods lack model transparency and are often difficult to interpret. This article proposes a novel end-to-end diagnostic attention-based deep residual recurrent neural network (DA-DRRNet) that effectively captures the temporal dynamics and extracts high-level attentive representations for accurate CHF detection. Specifically, we first employ a recurrent neural network (RNN) layer to encode the temporal dynamics from the raw ECG beats. Then, multilayered RNNs with residual connections are incorporated to extract high-level feature representations hierarchically. The residual connections allow gradients in deep RNN to propagate effectively, thereby improving the network's representation ability. Finally, an attention module identifies the hidden vectors corresponding to the diagnostically prominent ECG characteristics to form an attentive representation for improved CHF detection. Using ECG signals from the three publicly available datasets (BIDMC-CHF, PTBDB, and MIT-BIH NSRDB), the proposed method achieves an impressive accuracy of 98.57% and nearly 100% for beat-level and 24-h record-level diagnosis, respectively. Notably, the analysis of learned attention weights demonstrates that the proposed model focuses on the clinically relevant ECG features that characterize CHF. This model transparency and improved detection results advance research in this field and provide a reliable and transparent diagnostic system for CHF analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
4秒前
6秒前
李佳欣发布了新的文献求助10
7秒前
石峻亦发布了新的文献求助10
8秒前
Zenia发布了新的文献求助10
8秒前
结草衔环完成签到,获得积分10
9秒前
9秒前
9秒前
自由夕阳发布了新的文献求助10
10秒前
10秒前
123完成签到 ,获得积分10
12秒前
龙研发布了新的文献求助10
13秒前
Monicadd完成签到 ,获得积分10
15秒前
希望天下0贩的0应助妮娜采纳,获得10
16秒前
16秒前
初阶玩家发布了新的文献求助10
16秒前
田様应助zzs采纳,获得10
16秒前
肉酱发布了新的文献求助10
17秒前
共享精神应助小铭采纳,获得10
18秒前
李健的小迷弟应助梗梗采纳,获得30
18秒前
西莫完成签到,获得积分10
19秒前
20秒前
21秒前
orixero应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
fangjie应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得30
23秒前
ED应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
Rita应助科研通管家采纳,获得10
23秒前
fangjie应助科研通管家采纳,获得10
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3943024
求助须知:如何正确求助?哪些是违规求助? 3488034
关于积分的说明 11046786
捐赠科研通 3218664
什么是DOI,文献DOI怎么找? 1779086
邀请新用户注册赠送积分活动 864519
科研通“疑难数据库(出版商)”最低求助积分说明 799562