A knowledge graph embedding-based method for predicting the synergistic effects of drug combinations

知识图 计算机科学 嵌入 图形 图嵌入 水准点(测量) 药品 数据挖掘 人工智能 理论计算机科学 机器学习 药理学 医学 大地测量学 地理
作者
Peng Zhang,Shikui Tu
标识
DOI:10.1109/bibm55620.2022.9995466
摘要

Predicting the synergistic effects of drug combinations can accelerate the identification process of novel potential combination therapies for clinical studies. Although extensive efforts have been made in the field, the problem is still challenging due to the high sparsity of drug combinations' synergy data and the existence of false positive combinations resulted from the noise in experiments. In this paper, we develop a Knowledge Graph Embedding-based method for predicting the synergistic effects of Drug Combinations, namely KGE-DC, which fully extracts the features of drug combinations. Firstly, a largescale knowledge graph including drugs, targets, enzymes and transporters is constructed, therefore, the sparsity of the drug combinations' data is reduced and the reliability of the data is increased. Then, knowledge graph embedding, which are capable of capturing complex semantic information of various entities in the knowledge graph, is adopted for learning low-dimensional representations for the drugs and cell lines. Finally, the synergy scores of drug combinations are predicted based on the drug and cell line embeddings of the drug combinations' synergy data. Extensive experiments on benchmark dataset with four different synergy types demonstrate that KGE-DC outperforms state-of the-art methods on both the regression and classification tasks, namely predicting the synergy scores of drug combinations and predicting whether the drug combinations are synergistic combinations. Our results indicate that KGE-DC is a valuable tool to facilitate the discovery of novel combination therapies for cancer treatment. The implemented code and experimental dataset are available online at https://github.com/yushenshashen/KGE-DC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助madison采纳,获得10
1秒前
风筝与亭完成签到 ,获得积分10
1秒前
111发布了新的文献求助10
3秒前
绵绵完成签到,获得积分10
4秒前
4秒前
5秒前
科目三应助132324采纳,获得10
7秒前
Faine完成签到 ,获得积分10
8秒前
如风随水发布了新的文献求助10
8秒前
8秒前
科研通AI5应助不解释采纳,获得10
9秒前
Li应助无奈念薇采纳,获得10
10秒前
丘比特应助顺利的战斗机采纳,获得10
10秒前
爆米花应助kokocrl采纳,获得10
11秒前
生动越彬发布了新的文献求助10
11秒前
权邴发布了新的文献求助10
13秒前
科目三应助归一采纳,获得10
13秒前
14秒前
ding应助生动越彬采纳,获得10
15秒前
15秒前
王若凡发布了新的文献求助10
16秒前
火星上冬日完成签到,获得积分10
16秒前
积极晓兰发布了新的文献求助10
18秒前
犇骉发布了新的文献求助10
19秒前
jnuszjz应助萨尔莫斯采纳,获得10
19秒前
wzytu3完成签到,获得积分10
20秒前
胖胖完成签到 ,获得积分0
22秒前
23秒前
权邴完成签到,获得积分10
25秒前
皮代谷完成签到,获得积分10
26秒前
青衣北风发布了新的文献求助10
28秒前
29秒前
31秒前
花城完成签到,获得积分10
32秒前
青衣北风完成签到,获得积分10
33秒前
wanci应助LXhong采纳,获得10
34秒前
111完成签到,获得积分10
35秒前
swh完成签到,获得积分10
36秒前
37秒前
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642