A knowledge graph embedding-based method for predicting the synergistic effects of drug combinations

知识图 计算机科学 嵌入 图形 图嵌入 水准点(测量) 药品 数据挖掘 人工智能 理论计算机科学 机器学习 药理学 医学 大地测量学 地理
作者
Peng Zhang,Shikui Tu
标识
DOI:10.1109/bibm55620.2022.9995466
摘要

Predicting the synergistic effects of drug combinations can accelerate the identification process of novel potential combination therapies for clinical studies. Although extensive efforts have been made in the field, the problem is still challenging due to the high sparsity of drug combinations' synergy data and the existence of false positive combinations resulted from the noise in experiments. In this paper, we develop a Knowledge Graph Embedding-based method for predicting the synergistic effects of Drug Combinations, namely KGE-DC, which fully extracts the features of drug combinations. Firstly, a largescale knowledge graph including drugs, targets, enzymes and transporters is constructed, therefore, the sparsity of the drug combinations' data is reduced and the reliability of the data is increased. Then, knowledge graph embedding, which are capable of capturing complex semantic information of various entities in the knowledge graph, is adopted for learning low-dimensional representations for the drugs and cell lines. Finally, the synergy scores of drug combinations are predicted based on the drug and cell line embeddings of the drug combinations' synergy data. Extensive experiments on benchmark dataset with four different synergy types demonstrate that KGE-DC outperforms state-of the-art methods on both the regression and classification tasks, namely predicting the synergy scores of drug combinations and predicting whether the drug combinations are synergistic combinations. Our results indicate that KGE-DC is a valuable tool to facilitate the discovery of novel combination therapies for cancer treatment. The implemented code and experimental dataset are available online at https://github.com/yushenshashen/KGE-DC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
我的名字是山脉完成签到,获得积分10
刚刚
刚刚
刚刚
ding应助那些年采纳,获得10
1秒前
苹果诗珊发布了新的文献求助10
3秒前
3秒前
DamenS发布了新的文献求助10
3秒前
4秒前
jeser完成签到,获得积分10
5秒前
5秒前
6秒前
fantast完成签到,获得积分20
8秒前
隐形曼青应助九命采纳,获得10
8秒前
8秒前
科里斯皮尔应助Minicoper采纳,获得10
10秒前
zhangzz发布了新的文献求助10
10秒前
核桃发布了新的文献求助10
11秒前
kavins凯旋发布了新的文献求助10
12秒前
tcheng完成签到,获得积分10
13秒前
lie发布了新的文献求助10
13秒前
14秒前
孤独雪柳完成签到,获得积分20
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
远方完成签到,获得积分10
18秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4213735
求助须知:如何正确求助?哪些是违规求助? 3747966
关于积分的说明 11791481
捐赠科研通 3414820
什么是DOI,文献DOI怎么找? 1874066
邀请新用户注册赠送积分活动 928285
科研通“疑难数据库(出版商)”最低求助积分说明 837546