亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images

降噪 计算机科学 人工智能 散斑噪声 模式识别(心理学) 计算机视觉 视频去噪 噪音(视频) 非本地手段 图像去噪 斑点图案 图像(数学) 视频处理 多视点视频编码 视频跟踪
作者
Evgin Göçeri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106474-106474 被引量:76
标识
DOI:10.1016/j.compbiomed.2022.106474
摘要

Computerized methods provide analyses of skin lesions from dermoscopy images automatically. However, the images acquired from dermoscopy devices are noisy and cause low accuracy in automated methods. Therefore, various methods have been applied for denoising in the literature. There are some review-type papers about these methods. However, their authors have focused on either denoising with a specific approach or denoising from other images rather than dermoscopy images, which have a different characteristic. It is not possible to determine which method is the most suitable for denoising from dermoscopy images according to the results presented in them. Therefore, a review on the denoising approaches applied with dermoscopy images is required and, according to our knowledge, there is no such a review-type paper. To fill this gap in the literature, the required review has been performed in this work. Also, in this work, the methods in the literature have been implemented using the same data sets containing images with speckle or Gaussian types of noise. The results have been analyzed not only visually but also quantitatively to compare capabilities of the techniques. Our experiments indicated that each denoising technique has its own disadvantages and advantages. The main contributions of this paper are three-fold: (i) A comprehensive review on the denoising approaches applied with dermoscopy images has been presented. (ii) The denoising techniques have been implemented with the same images for meaningful comparisons. (iii) Both visual and quantitative analyses with different metrics have been performed and comparative performance evaluations have been presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
tianya完成签到,获得积分10
37秒前
sino-ft发布了新的文献求助10
42秒前
48秒前
多边棱发布了新的文献求助10
54秒前
sino-ft完成签到,获得积分10
58秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
白天亮完成签到,获得积分10
1分钟前
研友_LwbkK8发布了新的文献求助10
2分钟前
orixero应助研友_LwbkK8采纳,获得10
2分钟前
烟花应助多边棱采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
田様应助LiXingchen采纳,获得10
3分钟前
3分钟前
4分钟前
多边棱发布了新的文献求助10
4分钟前
研友_LwbkK8发布了新的文献求助10
4分钟前
研友_LwbkK8完成签到,获得积分10
4分钟前
4分钟前
Owen应助多边棱采纳,获得10
4分钟前
Una完成签到,获得积分10
4分钟前
alanbike完成签到,获得积分10
4分钟前
4分钟前
小海豹完成签到,获得积分10
5分钟前
5分钟前
LiXingchen发布了新的文献求助10
5分钟前
5分钟前
多边棱发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
wwt发布了新的文献求助10
6分钟前
6分钟前
001发布了新的文献求助30
6分钟前
充电宝应助wwt采纳,获得10
6分钟前
wwt完成签到,获得积分10
6分钟前
偷得浮生半日闲完成签到,获得积分10
6分钟前
情怀应助多边棱采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653735
求助须知:如何正确求助?哪些是违规求助? 4040106
关于积分的说明 12494763
捐赠科研通 3731033
什么是DOI,文献DOI怎么找? 2059416
邀请新用户注册赠送积分活动 1090145
科研通“疑难数据库(出版商)”最低求助积分说明 971260