Determination of the parameters of material models using dynamic indentation test and artificial neural network

缩进 分离式霍普金森压力棒 人工神经网络 材料科学 LS-DYNA系列 结构工程 应变率 复合材料 机械 有限元法 工程类 计算机科学 物理 人工智能
作者
Samaneh Pourolajal,Gholam Hossein Majzoobi
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE Publishing]
卷期号:58 (6): 501-514
标识
DOI:10.1177/03093247221140981
摘要

Stress-strain curves of materials normally change with strain rate and temperature and are normally defined by material models. In this study, a new technique was developed for determining the constants of material models. This technique was based on dynamic indentation test, numerical simulation using Ls-dyna code and artificial neural network. An indenter of tapered shape was shot against the materials as the target by a gas gun. The experiments were carried out for four strain rates and four temperatures. The target was made of pure copper. The penetration depth-time and load-time histories were captured by a LVDT and a piezoelectric load-cell, respectively and the load-penetration depth curve (P-h) was obtained. This curve is characterized by five parameters which are determined for each indentation test. On the other hand, the indentation test was simulated using Ls-dyna hydrocode. From the simulations, the P-h curves were obtained using Johnson-Cook (J-C) and Zerilli-Armstrong (Z-A) material models and the characterizing parameters of the numerical P-h curves were also identified. Finally, an artificial neural network (ANN) was trained by the numerical P-h curves parameters as the input and the constants of J-C and Z-A models as the output. The trained neural network was then tested by the experimental p-h curves parameters as the input and the constants of J-C and Z-A models as the output. Moreover, a number of dynamic compression tests were performed using the well-known Split Hopkinson Bar at the same strain rates and temperatures used for indentation tests and the stress-strain curves of material were obtained. A reasonable agreement was observed between the stress-strain curves predicted by neural network and the Split Hopkinson Bar. The proposed method does not need sophisticated instrumentation and in fact, the load-time and indentation depth-time histories are directly converted to stress-strain of material using an artificial neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL完成签到,获得积分10
2秒前
玉鱼儿完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
2秒前
火星上的鸵鸟完成签到 ,获得积分10
2秒前
2秒前
Destiny发布了新的文献求助10
3秒前
4秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
4秒前
152发布了新的文献求助10
4秒前
4秒前
G浅浅完成签到,获得积分10
5秒前
Lucas选李华完成签到 ,获得积分10
5秒前
安静听白完成签到,获得积分10
6秒前
6秒前
徐寻绿完成签到,获得积分10
6秒前
6秒前
7秒前
hhhh完成签到,获得积分10
7秒前
8秒前
没有名称发布了新的文献求助10
8秒前
8秒前
无名完成签到,获得积分10
8秒前
coco完成签到,获得积分10
8秒前
neiz完成签到,获得积分10
8秒前
Youlu发布了新的文献求助10
8秒前
呆萌幻竹完成签到 ,获得积分10
9秒前
KYG完成签到,获得积分20
9秒前
9秒前
jc哥发布了新的文献求助10
9秒前
飞飞发布了新的文献求助10
9秒前
9秒前
清风挽歌完成签到 ,获得积分10
10秒前
田様应助重要松鼠采纳,获得10
10秒前
10秒前
11秒前
徐寻绿发布了新的文献求助10
11秒前
zho发布了新的文献求助10
11秒前
文旦完成签到,获得积分10
11秒前
11秒前
ant完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578