亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determination of the parameters of material models using dynamic indentation test and artificial neural network

缩进 分离式霍普金森压力棒 人工神经网络 材料科学 LS-DYNA系列 结构工程 应变率 复合材料 机械 有限元法 工程类 计算机科学 物理 人工智能
作者
Samaneh Pourolajal,Gholam Hossein Majzoobi
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE Publishing]
卷期号:58 (6): 501-514
标识
DOI:10.1177/03093247221140981
摘要

Stress-strain curves of materials normally change with strain rate and temperature and are normally defined by material models. In this study, a new technique was developed for determining the constants of material models. This technique was based on dynamic indentation test, numerical simulation using Ls-dyna code and artificial neural network. An indenter of tapered shape was shot against the materials as the target by a gas gun. The experiments were carried out for four strain rates and four temperatures. The target was made of pure copper. The penetration depth-time and load-time histories were captured by a LVDT and a piezoelectric load-cell, respectively and the load-penetration depth curve (P-h) was obtained. This curve is characterized by five parameters which are determined for each indentation test. On the other hand, the indentation test was simulated using Ls-dyna hydrocode. From the simulations, the P-h curves were obtained using Johnson-Cook (J-C) and Zerilli-Armstrong (Z-A) material models and the characterizing parameters of the numerical P-h curves were also identified. Finally, an artificial neural network (ANN) was trained by the numerical P-h curves parameters as the input and the constants of J-C and Z-A models as the output. The trained neural network was then tested by the experimental p-h curves parameters as the input and the constants of J-C and Z-A models as the output. Moreover, a number of dynamic compression tests were performed using the well-known Split Hopkinson Bar at the same strain rates and temperatures used for indentation tests and the stress-strain curves of material were obtained. A reasonable agreement was observed between the stress-strain curves predicted by neural network and the Split Hopkinson Bar. The proposed method does not need sophisticated instrumentation and in fact, the load-time and indentation depth-time histories are directly converted to stress-strain of material using an artificial neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圣飞云宇完成签到 ,获得积分10
2秒前
LiangRen完成签到 ,获得积分10
16秒前
17秒前
无端发布了新的文献求助10
21秒前
在水一方应助无端采纳,获得10
26秒前
30秒前
星辰大海应助Broadway Zhang采纳,获得10
52秒前
1分钟前
1分钟前
nk完成签到 ,获得积分10
1分钟前
1分钟前
哈哈发布了新的文献求助10
1分钟前
哈哈完成签到,获得积分10
1分钟前
2分钟前
oleskarabach发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
tan发布了新的文献求助10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
miles完成签到,获得积分10
4分钟前
所所应助oleskarabach采纳,获得10
4分钟前
4分钟前
科目三应助lurongjun采纳,获得10
4分钟前
4分钟前
oleskarabach完成签到,获得积分20
4分钟前
lurongjun发布了新的文献求助10
4分钟前
大模型应助Broadway Zhang采纳,获得10
4分钟前
4分钟前
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
领导范儿应助naomic采纳,获得10
5分钟前
5分钟前
chenlc971125完成签到 ,获得积分10
6分钟前
Jasper应助mengzhe采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078174
求助须知:如何正确求助?哪些是违规求助? 4296992
关于积分的说明 13387697
捐赠科研通 4119605
什么是DOI,文献DOI怎么找? 2256111
邀请新用户注册赠送积分活动 1260442
关于科研通互助平台的介绍 1193951