SE-TCN network for continuous estimation of upper limb joint angles

外骨骼 接头(建筑物) 卷积神经网络 计算机科学 肘部 人工智能 上肢 反向传播 均方误差 肩关节 机器人 模拟 计算机视觉 人工神经网络 模式识别(心理学) 数学 物理医学与康复 工程类 解剖 结构工程 统计 医学
作者
Xiaoguang Liu,Jiawei Wang,Tie Liang,Cunguang Lou,Hongrui Wang,Xiuling Liu
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:20 (2): 3237-3260 被引量:6
标识
DOI:10.3934/mbe.2023152
摘要

<abstract> <p>The maturity of human-computer interaction technology has made it possible to use surface electromyographic signals (sEMG) to control exoskeleton robots and intelligent prostheses. However, the available upper limb rehabilitation robots controlled by sEMG have the shortcoming of inflexible joints. This paper proposes a method based on a temporal convolutional network (TCN) to predict upper limb joint angles by sEMG. The raw TCN depth was expanded to extract the temporal features and save the original information. The timing sequence characteristics of the muscle blocks that dominate the upper limb movement are not apparent, leading to low accuracy of the joint angle estimation. Therefore, this study squeeze-and-excitation networks (SE-Net) to improve the network model of the TCN. Finally, seven movements of the human upper limb were selected for ten human subjects, recording elbow angle (EA), shoulder vertical angle (SVA), and shoulder horizontal angle (SHA) values during their movements. The designed experiment compared the proposed SE-TCN model with the backpropagation (BP) and long short-term memory (LSTM) networks. The proposed SE-TCN systematically outperformed the BP network and LSTM model by the mean <italic>RMSE</italic> values: by 25.0 and 36.8% for EA, by 38.6 and 43.6% for SHA, and by 45.6 and 49.5% for SVA, respectively. Consequently, its <italic>R</italic><sup>2</sup> values exceeded those of BP and LSTM by 13.6 and 39.20% for EA, 19.01 and 31.72% for SHA, and 29.22 and 31.89% for SVA, respectively. This indicates that the proposed SE-TCN model has good accuracy and can be used to estimate the angles of upper limb rehabilitation robots in the future.</p> </abstract>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyulong发布了新的文献求助10
刚刚
刚刚
2秒前
鱼鱼鱼发布了新的文献求助10
2秒前
3秒前
华仔应助水门采纳,获得10
3秒前
4秒前
5秒前
hhh完成签到,获得积分10
5秒前
云宝发布了新的文献求助10
6秒前
小可爱发布了新的文献求助10
6秒前
7秒前
blacksmith0发布了新的文献求助10
8秒前
科研通AI5应助Cloud采纳,获得10
9秒前
SYLH应助wangye采纳,获得10
10秒前
香菜碗里来完成签到,获得积分10
12秒前
13秒前
NexusExplorer应助小可爱采纳,获得30
14秒前
一一应助Portafortuna采纳,获得10
17秒前
疯狂的金毛关注了科研通微信公众号
18秒前
wch666发布了新的文献求助50
18秒前
洁面乳发布了新的文献求助10
19秒前
陆小果完成签到,获得积分10
20秒前
21秒前
科研通AI5应助鱼鱼鱼采纳,获得30
22秒前
23秒前
超级尔白发布了新的文献求助10
24秒前
laodie发布了新的文献求助10
26秒前
洁面乳完成签到,获得积分10
28秒前
一一应助Portafortuna采纳,获得10
28秒前
ding应助wq采纳,获得10
30秒前
30秒前
Akim应助与光同尘采纳,获得10
32秒前
33秒前
34秒前
34秒前
35秒前
35秒前
小可爱发布了新的文献求助30
35秒前
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997