亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low Complexity Radar Gesture Recognition Using Synthetic Training Data

计算机科学 人工智能 计算机视觉 雷达 手势 手势识别 特征(语言学) 数据集 模式识别(心理学) 语言学 电信 哲学
作者
Yanhua Zhao,Vladica Sark,Miloš Krstić,Eckhard Grass
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (1): 308-308 被引量:13
标识
DOI:10.3390/s23010308
摘要

Developments in radio detection and ranging (radar) technology have made hand gesture recognition feasible. In heat map-based gesture recognition, feature images have a large size and require complex neural networks to extract information. Machine learning methods typically require large amounts of data and collecting hand gestures with radar is time- and energy-consuming. Therefore, a low computational complexity algorithm for hand gesture recognition based on a frequency-modulated continuous-wave (FMCW) radar and a synthetic hand gesture feature generator are proposed. In the low computational complexity algorithm, two-dimensional Fast Fourier Transform is implemented on the radar raw data to generate a range-Doppler matrix. After that, background modelling is applied to separate the dynamic object and the static background. Then a bin with the highest magnitude in the range-Doppler matrix is selected to locate the target and obtain its range and velocity. The bins at this location along the dimension of the antenna can be utilised to calculate the angle of the target using Fourier beam steering. In the synthetic generator, the Blender software is used to generate different hand gestures and trajectories and then the range, velocity and angle of targets are extracted directly from the trajectory. The experimental results demonstrate that the average recognition accuracy of the model on the test set can reach 89.13% when the synthetic data are used as the training set and the real data are used as the test set. This indicates that the generation of synthetic data can make a meaningful contribution in the pre-training phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raunio完成签到,获得积分10
1秒前
热带蚂蚁完成签到 ,获得积分10
8秒前
octopus完成签到,获得积分10
9秒前
碳酸芙兰完成签到,获得积分10
10秒前
打打应助jjj采纳,获得10
12秒前
fei完成签到 ,获得积分10
12秒前
21秒前
Artin发布了新的文献求助30
25秒前
jjj发布了新的文献求助10
25秒前
27秒前
桥豆麻袋完成签到 ,获得积分10
27秒前
31秒前
若雨凌风完成签到,获得积分10
33秒前
Lucas应助Vicki采纳,获得10
39秒前
44秒前
董H完成签到,获得积分10
45秒前
盐植物完成签到,获得积分10
49秒前
NexusExplorer应助MechaniKer采纳,获得10
55秒前
wanci应助56采纳,获得10
58秒前
3113129605完成签到 ,获得积分10
1分钟前
AQI完成签到,获得积分10
1分钟前
科研通AI5应助愤怒的无敌采纳,获得10
1分钟前
1分钟前
1分钟前
桃花落完成签到,获得积分10
1分钟前
清爽冰露完成签到,获得积分10
1分钟前
嘻嘻嘻发布了新的文献求助10
1分钟前
桃花落发布了新的文献求助10
1分钟前
坚强的纸飞机完成签到,获得积分10
1分钟前
1分钟前
1分钟前
可爱的函函应助桃花落采纳,获得10
1分钟前
1分钟前
ddrose发布了新的文献求助10
1分钟前
橙子完成签到,获得积分10
1分钟前
jinmuna完成签到,获得积分10
1分钟前
蓝苏完成签到,获得积分10
1分钟前
小伏完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702