亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of dose deposition matrix using voxel features driven machine learning approach

体素 计算机科学 核医学 铅笔(光学) 人工智能 数学 物理 医学 光学
作者
Shengxiu Jiao,Xiaoqian Zhao,Shuzhan Yao
出处
期刊:British Journal of Radiology [Wiley]
标识
DOI:10.1259/bjr.20220373
摘要

Objectives: A dose deposition matrix (DDM) prediction method using several voxel features and a machine learning (ML) approach is proposed for plan optimization in radiation therapy. Methods: Head and lung cases with the inhomogeneous medium are used as training and testing data. The prediction model is a cascade forward backprop neural network where the input is the features of the voxel, including 1) voxel to body surface distance along the beamlet axis, 2) voxel to beamlet axis distance, 3) voxel density, 4) heterogeneity corrected voxel to body surface distance, 5) heterogeneity corrected voxel to beamlet axis, and (6) the dose of voxel obtained from the pencil beam (PB) algorithm. The output is the predicted voxel dose corresponding to a beamlet. The predicted DDM was used for plan optimization (ML method) and compared with the dose of MC-based plan optimization (MC method) and the dose of pencil beam-based plan optimization (PB method). The mean absolute error (MAE) value was calculated for full volume relative to the dose of the MC method to evaluate the overall dose performance of the final plan. Results: For patient with head tumor, the ML method achieves MAE value 0.49 × 10 −4 and PB has MAE 1.86 × 10 −4 . For patient with lung tumor, the ML method has MAE 1.42 × 10 −4 and PB has MAE 3.72 × 10 −4 . The maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 1.2% for patient with head tumor, while the difference is larger than 10% using the PB method. For patient with lung tumor, the maximum percentage difference in PTV dose coverage (D 98 ) between ML and MC methods is no more than 2.1%, while the difference is larger than 16% using the PB method. Conclusions: In this work, a reliable DDM prediction method is established for plan optimization by applying several voxel features and the ML approach. The results show that the ML method based on voxel features can obtain plans comparable to the MC method and is better than the PB method in achieving accurate dose to the patient, which is helpful for rapid plan optimization and accurate dose calculation. Advances in knowledge: Establishment of a new machine learning method based on the relationship between the voxel and beamlet features for dose deposition matrix prediction in radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
damturexu完成签到,获得积分10
17秒前
27秒前
烟消云散发布了新的文献求助10
32秒前
NexusExplorer应助烟消云散采纳,获得10
39秒前
在路上完成签到 ,获得积分0
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
2分钟前
烟消云散发布了新的文献求助10
2分钟前
烟消云散完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
3分钟前
4分钟前
无花果应助科研通管家采纳,获得10
4分钟前
所所应助James采纳,获得10
4分钟前
Blessing发布了新的文献求助20
5分钟前
Blessing完成签到,获得积分10
5分钟前
称心如意完成签到 ,获得积分10
6分钟前
年轻千愁完成签到 ,获得积分10
7分钟前
TEY完成签到 ,获得积分10
7分钟前
所所应助schnappi采纳,获得10
7分钟前
7分钟前
schnappi完成签到,获得积分20
7分钟前
schnappi发布了新的文献求助10
7分钟前
xingsixs完成签到 ,获得积分10
7分钟前
8分钟前
James发布了新的文献求助10
8分钟前
James完成签到,获得积分10
8分钟前
传奇3应助wise111采纳,获得10
8分钟前
8分钟前
wise111发布了新的文献求助10
9分钟前
mmyhn完成签到,获得积分10
9分钟前
在水一方应助wise111采纳,获得10
9分钟前
dashi完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
wise111发布了新的文献求助10
9分钟前
9分钟前
wise111发布了新的文献求助10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281990
捐赠科研通 3053516
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468