A data-driven fault detection approach for Modular Reconfigurable Flying Array based on the Improved Deep Forest

模块化设计 残余物 故障检测与隔离 断层(地质) 计算机科学 多元统计 深度学习 人工智能 数据挖掘 功能(生物学) 实时计算 算法 机器学习 地质学 操作系统 生物 进化生物学 地震学 执行机构
作者
Zhiwei Yao,Chunxi Yang,Yong Peng,Xiufeng Zhang,Fei Chen
出处
期刊:Measurement [Elsevier]
卷期号:206: 112217-112217 被引量:7
标识
DOI:10.1016/j.measurement.2022.112217
摘要

The Modular Reconfigurable Flying Array, as a kind of special modular rotorcraft UAV, can change its topology configurations fitting for different tasks and varying work scenarios. However, strongly nonlinear characteristics and limited uncertainties of Modular Reconfigurable Flying Array make its sensor faults happen easily and fail to be detected with higher accuracy. In the light of the potential serious losses of its sensors faults, it is valuable and challenging to detect the sensor faults of the aircraft accurately and effectively. Therefore, a data-driven multivariate regression approach based on the Improved Deep Forest is proposed to fulfill sensor faults detection. Firstly, the Deep Forest algorithm is improved by adding the enhanced cascade layer structure and redesigning the inter-layer loss function to pursuit better prediction accuracy. And then, the Improved Deep Forest algorithm is used to establish a multivariate regression model and obtains an estimation of the monitored parameter by learning the historical flight data. Finally, the residual between the actual flight data and the estimated value is calculated to achieve sensor faults detection by comparing with the statistical threshold. What is more, the proposed faults detection approach is evaluated with two real flight datasets collected from the self-made rotorcraft and the experimental results show that the average ACC and AUC are increased by 3% and 2.3% respectively compared with the approach based on the standard Deep Forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助可yi采纳,获得10
1秒前
springwell完成签到,获得积分10
1秒前
Somogyis发布了新的文献求助10
2秒前
852应助zz采纳,获得10
2秒前
红红酱发布了新的文献求助10
2秒前
科研通AI6应助陈龙采纳,获得10
3秒前
嘁嘁完成签到 ,获得积分10
3秒前
4秒前
Zirong发布了新的文献求助10
4秒前
4秒前
4秒前
禾桉完成签到,获得积分10
5秒前
小俊发布了新的文献求助10
5秒前
酷炫大树发布了新的文献求助10
5秒前
6秒前
三明治完成签到,获得积分10
7秒前
chitanggo完成签到 ,获得积分10
8秒前
8秒前
8秒前
Tsin778发布了新的文献求助10
9秒前
9秒前
10秒前
嘛哩嘛哩轰完成签到,获得积分10
10秒前
tinneywu完成签到 ,获得积分10
10秒前
天天快乐应助甘宁采纳,获得10
11秒前
11秒前
11秒前
豆4799完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
YaoHui发布了新的文献求助10
12秒前
王都对发布了新的文献求助10
12秒前
xiaomeng完成签到 ,获得积分10
12秒前
12秒前
weddcf发布了新的文献求助10
14秒前
情怀应助啦啦啦啦采纳,获得10
15秒前
15秒前
16秒前
16秒前
漂亮糖豆发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091