A Hybrid Deep Spatiotemporal Attention‐Based Model for Parkinson's Disease Diagnosis Using Resting State EEG Signals

帕金森病 静息状态功能磁共振成像 脑电图 神经科学 功能连接 计算机科学 疾病 人工智能 模式识别(心理学) 医学 心理学 内科学
作者
Niloufar Delfan,M R Shahsavari,Sadiq Hussain,Robertas Damaševičius,U. Rajendra Acharya
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4) 被引量:7
标识
DOI:10.1002/ima.23120
摘要

ABSTRACT Parkinson's disease (PD), a severe and progressive neurological illness, affects millions of individuals worldwide. For effective treatment and management of PD, an accurate and early diagnosis is crucial. This study presents a deep learning‐based model for the diagnosis of PD using a resting state electroencephalogram (EEG) signal. The objective of the study is to develop an automated model that can extract complex hidden nonlinear features from EEG and demonstrate its generalizability on unseen data. The model is designed using a hybrid model, consisting of a convolutional neural network (CNN), bidirectional gated recurrent unit (Bi‐GRU), and attention mechanism. The proposed method is evaluated on three public datasets (UC San Diego, PRED‐CT, and University of Iowa [UI] dataset), with one dataset used for training and the other two for evaluation. The proposed model demonstrated remarkable performance, attaining high accuracy scores of 99.4%, 84%, and 73.2% using UC San Diego, PRED‐CT, and UI datasets, respectively. These results justify the effectiveness and robustness of the proposed model across diverse datasets, highlighting its potential for versatile applications in data analysis and prediction tasks. Our proposed hybrid spatiotemporal attention‐based model has been developed with 10‐fold cross‐validation (CV) for UC San Diego dataset and 10‐fold CV and leave‐one‐out cross‐validation (LOOCV) strategies for PRED‐CT and UI datasets. Our results indicate that the proposed PD detection system is accurate and robust. The developed prototype can be used for other neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and so forth.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言悦完成签到,获得积分10
2秒前
FODCOC完成签到,获得积分10
3秒前
Brian完成签到,获得积分10
4秒前
sci大户发布了新的文献求助10
5秒前
NexusExplorer应助Hydrogen采纳,获得10
6秒前
Minerva发布了新的文献求助10
6秒前
苹果完成签到,获得积分10
8秒前
温柔寒梅完成签到 ,获得积分10
8秒前
SAL完成签到,获得积分0
9秒前
研友_8K2QJZ完成签到,获得积分10
9秒前
秋水完成签到 ,获得积分10
12秒前
完美凝海完成签到,获得积分10
13秒前
Jasper应助Minerva采纳,获得10
13秒前
小桶爸爸完成签到,获得积分10
13秒前
15秒前
友好傲白完成签到,获得积分10
15秒前
灵巧的十八完成签到 ,获得积分10
16秒前
酪酪Alona完成签到,获得积分10
16秒前
kehe!完成签到 ,获得积分0
16秒前
趁微风不躁完成签到,获得积分10
16秒前
奋斗人雄完成签到,获得积分10
18秒前
老迟到的雪曼完成签到,获得积分10
20秒前
qwf完成签到 ,获得积分10
21秒前
Hydrogen发布了新的文献求助10
21秒前
25秒前
Clarissa完成签到,获得积分10
25秒前
随便取完成签到,获得积分10
26秒前
liyan完成签到 ,获得积分10
26秒前
善良断缘完成签到 ,获得积分10
28秒前
研友_nPxRRn发布了新的文献求助10
31秒前
yin完成签到,获得积分10
31秒前
mojito完成签到 ,获得积分10
31秒前
文献高手完成签到 ,获得积分10
32秒前
在水一方完成签到 ,获得积分10
33秒前
爱读文献完成签到 ,获得积分10
34秒前
愤怒的店员完成签到,获得积分10
36秒前
puhu完成签到,获得积分10
36秒前
panda完成签到,获得积分10
36秒前
研都不研了完成签到 ,获得积分10
38秒前
平常书本完成签到 ,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491137
关于积分的说明 11059180
捐赠科研通 3222093
什么是DOI,文献DOI怎么找? 1780844
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083