Task Relatedness-Based Multitask Genetic Programming for Dynamic Flexible Job Shop Scheduling

计算机科学 启发式 作业车间调度 人工智能 多任务学习 机器学习 调度(生产过程) 学习迁移 任务分析 人口 任务(项目管理) 数学优化 数学 人口学 经济 操作系统 管理 社会学 地铁列车时刻表
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Kay Chen Tan,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1705-1719 被引量:22
标识
DOI:10.1109/tevc.2022.3199783
摘要

Multitask learning has been successfully used in handling multiple related tasks simultaneously. In reality, there are often many tasks to be solved together, and the relatedness between them is unknown in advance. In this article, we focus on the multitask genetic programming (GP) for the dynamic flexible job shop scheduling (DFJSS) problems, and address two challenges. The first is how to measure the relatedness between tasks accurately. The second is how to select task pairs to transfer knowledge during the multitask learning process. To measure the relatedness between DFJSS tasks, we propose a new relatedness metric based on the behavior distributions of the variable-length GP individuals. In addition, for more effective knowledge transfer, we develop an adaptive strategy to choose the most suitable assisted task for the target task based on the relatedness information between tasks. The findings show that in all of the multitask scenarios studied, the proposed algorithm can substantially increase the effectiveness of the learned scheduling heuristics for all the desired tasks. The effectiveness of the proposed algorithm has also been verified by the analysis of task relatedness and structures of the evolved scheduling heuristics, and the discussions of population diversity and knowledge transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的清炎完成签到,获得积分10
刚刚
张宇鑫发布了新的文献求助10
刚刚
感动的笑翠完成签到,获得积分10
1秒前
4秒前
sushx完成签到,获得积分10
4秒前
7秒前
DoctorX发布了新的文献求助10
9秒前
专注白昼完成签到,获得积分10
9秒前
10秒前
11秒前
认真的白竹完成签到 ,获得积分10
11秒前
12秒前
光亮面包发布了新的文献求助10
15秒前
自信的丸子完成签到,获得积分10
15秒前
Orange应助芽衣采纳,获得10
16秒前
mtt发布了新的文献求助10
16秒前
chenwei完成签到,获得积分10
17秒前
优雅颜完成签到,获得积分10
20秒前
大模型应助热情的阿猫桑采纳,获得10
21秒前
冰魂应助郭宇采纳,获得10
22秒前
Orange应助明天会更美好采纳,获得10
25秒前
26秒前
斯文败类应助chemhub采纳,获得10
27秒前
可爱的函函应助科研民工采纳,获得10
27秒前
李健的小迷弟应助芽衣采纳,获得10
30秒前
32秒前
34秒前
cinyadane完成签到 ,获得积分10
37秒前
37秒前
小五屁孩儿完成签到,获得积分10
39秒前
顾矜应助蔡继海采纳,获得10
40秒前
pazuzu发布了新的文献求助10
40秒前
科研小王完成签到,获得积分10
41秒前
45秒前
46秒前
46秒前
开始完成签到,获得积分10
47秒前
48秒前
49秒前
科研民工发布了新的文献求助10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976