Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma

列线图 医学 无线电技术 放射科 淋巴结 阶段(地层学) 神经组阅片室 肿瘤科 内科学 神经学 生物 精神科 古生物学
作者
Xingguo Zhao,Wenming Li,Jiulou Zhang,Shui Tian,Yang Zhou,Xiao‐Quan Xu,Hao Hu,Dapeng Lei,Fei‐Yun Wu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (2): 1121-1131 被引量:18
标识
DOI:10.1007/s00330-022-09051-4
摘要

ObjectivesTo investigate the role of CT radiomics for preoperative prediction of lymph node metastasis (LNM) in laryngeal squamous cell carcinoma (LSCC).MethodsLSCC patients who received open surgery and lymphadenectomy were enrolled and randomized into primary and validation cohorts at a ratio of 7:3 (325 vs. 139). In the primary cohort, we extracted radiomics features from whole intratumoral regions on venous-phase CT images and constructed a radiomics signature by least absolute shrinkage and selection operator (LASSO) regression. A radiomics model incorporating the radiomic signature and independent clinical factors was established via multivariable logistic regression and presented as a nomogram. Nomogram performance was compared with a clinical model and traditional CT report with respect to its discrimination and clinical usefulness. The radiomics nomogram was internally tested in an independent validation cohort.ResultsThe radiomics signature, composed of 9 stable features, was associated with LNM in both the primary and validation cohorts (both p < .001). A radiomics model incorporating independent predictors of LNM (the radiomics signature, tumor subsite, and CT report) showed significantly better discrimination of nodal status than either the clinical model or the CT report in the primary cohort (AUC 0.91 vs. 0.84 vs. 0.68) and validation cohort (AUC 0.89 vs. 0.83 vs. 0.70). Decision curve analysis confirmed that the radiomics nomogram was superior to the clinical model and traditional CT report.ConclusionsThe CT-based radiomics nomogram may improve preoperative identification of nodal status and help in clinical decision-making in LSCC.Key Points • The radiomics model showed favorable performance for predicting LN metastasis in LSCC patients. • The radiomics model may help in clinical decision-making and define patient subsets benefiting most from neck treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助尊敬的芷卉采纳,获得10
刚刚
李爱国应助尊敬的芷卉采纳,获得10
刚刚
刚刚
李健应助尊敬的芷卉采纳,获得10
刚刚
NexusExplorer应助尊敬的芷卉采纳,获得10
刚刚
大模型应助尊敬的芷卉采纳,获得10
刚刚
田様应助尊敬的芷卉采纳,获得10
刚刚
我是老大应助尊敬的芷卉采纳,获得10
刚刚
Jasper应助尊敬的芷卉采纳,获得10
刚刚
完美世界应助尊敬的芷卉采纳,获得10
刚刚
小二郎应助尊敬的芷卉采纳,获得10
刚刚
2秒前
3秒前
彩色皓轩发布了新的文献求助10
6秒前
6秒前
7秒前
赘婿应助CXWANG采纳,获得10
7秒前
fff发布了新的文献求助10
7秒前
xpxxj发布了新的文献求助10
7秒前
8秒前
8秒前
Jasper应助认真谷雪采纳,获得10
9秒前
11秒前
jun完成签到 ,获得积分10
11秒前
今后应助忧郁的犀牛采纳,获得10
12秒前
科研通AI5应助杨可宇采纳,获得10
12秒前
13秒前
15秒前
长安某发布了新的文献求助10
15秒前
yearluren完成签到,获得积分10
16秒前
波西米亚发布了新的文献求助10
17秒前
星辰大海应助Focus_BG采纳,获得10
17秒前
18秒前
小明发布了新的文献求助10
19秒前
清风完成签到,获得积分10
20秒前
20秒前
Chem34完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
kk完成签到,获得积分10
22秒前
Two_h发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313859
求助须知:如何正确求助?哪些是违规求助? 3833410
关于积分的说明 11992854
捐赠科研通 3473551
什么是DOI,文献DOI怎么找? 1904817
邀请新用户注册赠送积分活动 951591
科研通“疑难数据库(出版商)”最低求助积分说明 853147