Facial Emotion Recognition in Verbal Communication Based on Deep Learning

情绪识别 非语言交际 语音识别 面部表情 计算机科学 心理学 深度学习 人工智能 认知心理学 沟通
作者
Mohammed F. Alsharekh
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (16): 6105-6105 被引量:25
标识
DOI:10.3390/s22166105
摘要

Facial emotion recognition from facial images is considered a challenging task due to the unpredictable nature of human facial expressions. The current literature on emotion classification has achieved high performance over deep learning (DL)-based models. However, the issue of performance degradation occurs in these models due to the poor selection of layers in the convolutional neural network (CNN) model. To address this issue, we propose an efficient DL technique using a CNN model to classify emotions from facial images. The proposed algorithm is an improved network architecture of its kind developed to process aggregated expressions produced by the Viola–Jones (VJ) face detector. The internal architecture of the proposed model was finalised after performing a set of experiments to determine the optimal model. The results of this work were generated through subjective and objective performance. An analysis of the results presented herein establishes the reliability of each type of emotion, along with its intensity and classification. The proposed model is benchmarked against state-of-the-art techniques and evaluated on the FER-2013, CK+, and KDEF datasets. The utility of these findings lies in their application by law-enforcing bodies in smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
于忠波完成签到,获得积分10
3秒前
充电宝应助十九采纳,获得30
4秒前
zz发布了新的文献求助10
5秒前
英姑应助淡淡紫山采纳,获得10
5秒前
小蘑菇应助自由宛筠采纳,获得10
5秒前
聪慧小孙完成签到,获得积分10
5秒前
zuolan完成签到,获得积分10
5秒前
9秒前
10秒前
10秒前
杨静完成签到,获得积分10
11秒前
在水一方应助认真以寒采纳,获得10
11秒前
tlggg发布了新的文献求助10
12秒前
mei完成签到,获得积分10
12秒前
eco发布了新的文献求助10
14秒前
梦里潇湘发布了新的文献求助10
15秒前
Underwood111完成签到,获得积分10
16秒前
小手冰凉发布了新的文献求助20
17秒前
善学以致用应助王一一采纳,获得10
17秒前
淡淡紫山完成签到,获得积分10
19秒前
FORREST1993完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
安辰完成签到,获得积分10
23秒前
李爱国应助羊羊采纳,获得10
24秒前
dudu发布了新的文献求助10
24秒前
26秒前
26秒前
1523完成签到 ,获得积分10
26秒前
大反应釜完成签到,获得积分10
28秒前
28秒前
28秒前
冰魂应助吕健采纳,获得10
29秒前
29秒前
zz完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761