Bon-APT: Detection, Attribution, and Explainability of APT Malware Using Temporal Segmentation of API Calls

恶意软件 计算机科学 归属 透明度(行为) 分割 透视图(图形) 可靠性(半导体) 人工智能 国家(计算机科学) 机器学习 数据科学 计算机安全 心理学 社会心理学 功率(物理) 物理 算法 量子力学
作者
Gil Shenderovitz,Nir Nissim
出处
期刊:Computers & Security [Elsevier BV]
卷期号:142: 103862-103862 被引量:4
标识
DOI:10.1016/j.cose.2024.103862
摘要

Advanced Persistent Threats (APTs) are highly sophisticated cyberattacks that are aimed at achieving strategic goals and are usually backed by a well-funded entity. In this paper, we tackle the challenges of detecting and attributing APTs by proposing Bon-APT, a temporal learning method that analyzes and segment the occurrences of API calls invoked during the dynamic analysis of the examined PE. Those segments can be used to profile the temporal behavior of an APT, provide insights into its modus operandi, and induce an accurate machine-learning based model for the detection and attribution of APTs. Moreover, Bon-APT provides a human comprehensible explainability regarding the relations among segments as well as the behavior of the APT in each of them. This not only improves transparency and reliability from a human expert perspective, but it can also enrich the security experts with new knowledge regarding APTs' behavior. To evaluate Bon-APT, we built a unique collection of 12,655 APTs, belonging to 188 different cyber-groups and 17 different nations, which, to the best of our knowledge, is the largest collection of its kind. We conducted four experiments to evaluate the proposed method and compared its performance to the performance of state-of-the-art methods on the tasks of APT detection and authorship attribution (for both group and nation). Bon-APT achieved promising results in each of the tasks while outperforming the state-of-the-art methods. Bon-APT also provides a simple and concise explanation regarding its decisions and the APT behavior, as well as an easy, straightforward visual and quantitative behavioral comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的傲薇完成签到 ,获得积分10
刚刚
科研通AI5应助比大家采纳,获得10
3秒前
SciGPT应助阿海的采纳,获得10
4秒前
逆天大脚完成签到,获得积分10
6秒前
None发布了新的文献求助10
9秒前
12秒前
underunder完成签到,获得积分10
13秒前
15秒前
可爱的函函应助wenbin采纳,获得10
15秒前
稳重奇异果应助梅子酒采纳,获得20
15秒前
nicelily完成签到 ,获得积分10
15秒前
17秒前
18秒前
流水完成签到 ,获得积分10
19秒前
符寄柔发布了新的文献求助10
20秒前
20秒前
21秒前
23秒前
24秒前
ergatoid完成签到,获得积分10
25秒前
欢喜的天空完成签到,获得积分20
25秒前
香蕉觅云应助大坚果采纳,获得20
27秒前
28秒前
29秒前
33秒前
文献看不懂应助火花采纳,获得10
33秒前
34秒前
活力的雨雪完成签到,获得积分10
35秒前
36秒前
思源应助lipppu采纳,获得10
36秒前
王清水完成签到 ,获得积分10
36秒前
36秒前
文茵完成签到,获得积分10
37秒前
38秒前
qiulong发布了新的文献求助10
39秒前
Hello应助peanut采纳,获得10
39秒前
wenbin发布了新的文献求助10
40秒前
细心的小鸽子完成签到,获得积分10
43秒前
大坚果发布了新的文献求助20
44秒前
wenbin完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893