Artificial Neural Networks for Inverse Design of a Semi-Auxetic Metamaterial

辅助 超材料 反向 人工神经网络 斗篷 计算机科学 材料科学 人工智能 数学 光电子学 几何学 复合材料
作者
Mohammadreza Mohammadnejad,Amin Montazeri,Ehsan Bahmanpour,Maryam Mahnama
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:200: 111927-111927
标识
DOI:10.1016/j.tws.2024.111927
摘要

This study introduces an artificial neural network approach for the inverse design of a novel semi-auxetic mechanical metamaterial to achieve a specified stress-strain curve and/or Poisson's ratio-strain curve. To accomplish this, after presenting the metamaterial and assessing its characteristics, 1500 structures of the same metamaterial with various parameters are generated using a parametric model. The metamaterials are then gone through a compression test simulation using Finite Element (FE) analysis; accordingly, each metamaterial's stress-strain and Poisson's ratio curves are derived. The results of FE simulations are validated using mesh convergence check and experimental compression tests on a 3D printed specimen of the proposed metamaterial. In the next step, 80% of the data are randomly selected to be used as training data for the artificial neural networks (ANN), while the remaining 20% is employed to evaluate the performance of the ANNs using different metrics. The capability of the ANNs to predict the design parameters of the proposed metamaterial is assessed by providing different kinds of inputs, including the stress-strain curve, Poisson's ratio curve, and both. The observations reveal that the ANNs achieve more accurate results when both the stress-strain and Poisson's ratio-strain curves are provided as the inputs. The presented ANN in this study serves as a robust tool for precisely designing the parameters of the proposed metamaterial, allowing for the attainment of the desired stress-strain and/or Poisson's ratio-strain behavior. It is shown that the proposed metamaterial owns potential applications in crawling soft robotics, automotive, and construction industries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助jjwen采纳,获得10
4秒前
5秒前
cdercder应助科研通管家采纳,获得20
5秒前
Leif应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Leif应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Leif应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
七七完成签到,获得积分10
7秒前
8秒前
9秒前
小夏咕噜发布了新的文献求助10
12秒前
12秒前
qinghong发布了新的文献求助10
12秒前
laber应助会科研的胡萝卜采纳,获得30
13秒前
sljsb完成签到,获得积分10
13秒前
qks完成签到 ,获得积分10
15秒前
17秒前
会科研的胡萝卜完成签到,获得积分10
18秒前
黑大侠完成签到 ,获得积分10
18秒前
sljsb发布了新的文献求助10
19秒前
科研通AI5应助qinghong采纳,获得10
20秒前
qin123完成签到 ,获得积分10
29秒前
庆123发布了新的文献求助20
29秒前
领导范儿应助跪求采纳,获得10
31秒前
七七发布了新的文献求助10
33秒前
maxin完成签到,获得积分10
36秒前
红宝石设计局完成签到,获得积分10
37秒前
桐桐应助庆123采纳,获得10
39秒前
oboy应助午休采纳,获得10
39秒前
科研通AI2S应助Bin_Liu采纳,获得10
41秒前
42秒前
良仑发布了新的文献求助10
43秒前
小赵完成签到 ,获得积分10
45秒前
庆123完成签到,获得积分20
47秒前
提灯发布了新的文献求助10
47秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535