Ultra-wideband Radar-based Sleep Stage Classification in Smartphone using an End-to-end Deep Learning

计算机科学 端到端原则 雷达 人工智能 遥感 深度学习 睡眠(系统调用) 宽带 阶段(地层学) 电信 地质学 电子工程 工程类 古生物学 操作系统
作者
Jonghyun Park,Seung-Man Yang,Gyoo-Pil Chung,Ivo Junior Leal Zanghettin,Jonghee Han
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 61252-61264 被引量:1
标识
DOI:10.1109/access.2024.3390391
摘要

As an increasing number of people suffer from sleep disorders, such as insomnia or sleep apnea, sleep monitoring and management using consumer devices have gained increasing attention from research communities. As sleep quality is closely related to sleep structure based on hypnograms, the classification of sleep stages over the course of the night is important for accurate sleep monitoring. We present sleep stage classification using a smartphone equipped with ultra-wideband (UWB) radar. We focused on the development of easily accessible sleep monitoring system for the general population by placing the smartphone on a table near a bed, which is commonly used during sleep. We collected 509 nights of UWB radar and nocturnal in-laboratory polysomnography (PSG) data from various participants, including patients with apnea, using a customized Samsung Galaxy smartphone with a UWB radar chip placed on a table near the bed. A combination of 1D convolutional neural network and transformer architecture was proposed in this study, and a domain adaptation technique was applied to train the model with both large-scale respiratory signals from open database PSGs and UWB radar data to boost the performance by overcoming the lack of UWB radar data. With 5-fold validation, an epoch-by-epoch comparison between the predicted and expert-annotated four sleep stages (Wake, REM sleep, light sleep, and deep sleep) resulted in 0.76 of accuracy and 0.64 of Cohen's kappa. This study demonstrated that sleep stages can be monitored with substantial accuracy by simply placing a smartphone on a bedtable, making it highly usable and reliable in real use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
五条悟完成签到,获得积分10
1秒前
赘婿应助sixgarden采纳,获得10
3秒前
4秒前
代宇完成签到,获得积分10
4秒前
5秒前
倾卿如玉完成签到 ,获得积分10
6秒前
冷傲威发布了新的文献求助10
6秒前
6秒前
科研通AI5应助Wangyingjie5采纳,获得10
7秒前
8秒前
赘婿应助叶成帷采纳,获得10
9秒前
黑面包完成签到 ,获得积分10
9秒前
代宇发布了新的文献求助10
10秒前
英俊绿海发布了新的文献求助10
13秒前
烟花应助怦然心动采纳,获得10
16秒前
乐乐应助漂亮幻莲采纳,获得10
17秒前
19秒前
19秒前
领导范儿应助calm采纳,获得10
21秒前
22秒前
叶成帷发布了新的文献求助10
23秒前
25秒前
26秒前
28秒前
漂亮幻莲完成签到,获得积分10
29秒前
Wangyingjie5发布了新的文献求助10
29秒前
幽默的蛋挞完成签到,获得积分10
30秒前
WaitP应助科研小白采纳,获得10
30秒前
毅然决然必然关注了科研通微信公众号
30秒前
晴空万里完成签到 ,获得积分10
30秒前
32秒前
漂亮幻莲发布了新的文献求助10
34秒前
34秒前
dagejing4055发布了新的文献求助10
35秒前
wanci应助布吉岛呀采纳,获得10
37秒前
无花果应助傻自强呀采纳,获得10
38秒前
38秒前
五条悟发布了新的文献求助20
39秒前
尊敬的惠发布了新的文献求助10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798124
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316676
捐赠科研通 3060263
什么是DOI,文献DOI怎么找? 1679457
邀请新用户注册赠送积分活动 806563
科研通“疑难数据库(出版商)”最低求助积分说明 763264