Knowledge‐driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un‐supervised learning

深度学习 人工智能 计算机科学 背景(考古学) 人工神经网络 无监督学习 领域(数学分析) 机器学习 领域知识 模式识别(心理学) 数学 生物 数学分析 古生物学
作者
Rongpin Wang,Ruoyou Wu,Sen Jia,Alou Diakite,Cheng Li,Qiegen Liu,Hairong Zheng,Leslie Ying
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (2): 496-518
标识
DOI:10.1002/mrm.30105
摘要

Deep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MRI involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MRI along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助夕子爱科研采纳,获得10
刚刚
1秒前
3秒前
小蘑菇应助李林采纳,获得10
3秒前
minsun完成签到,获得积分10
6秒前
柚皘发布了新的文献求助10
7秒前
cdercder应助兮豫采纳,获得10
7秒前
科研通AI5应助Suchus采纳,获得30
8秒前
cdercder应助csq采纳,获得10
8秒前
9秒前
Johnson完成签到 ,获得积分10
12秒前
roking发布了新的文献求助10
12秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
小虫学长应助科研通管家采纳,获得20
14秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
16秒前
LYQ完成签到,获得积分10
16秒前
gongranpi发布了新的文献求助10
18秒前
情怀应助果果采纳,获得20
18秒前
xch发布了新的文献求助10
19秒前
科研助手6应助hjhhje采纳,获得20
20秒前
充电宝应助蜗居采纳,获得10
24秒前
包子完成签到,获得积分10
24秒前
力劈华山完成签到,获得积分10
24秒前
25秒前
Jasper应助微笑的白羊采纳,获得10
26秒前
阿星完成签到,获得积分10
26秒前
zwy完成签到 ,获得积分10
27秒前
唯美完成签到,获得积分10
27秒前
华仔应助YY采纳,获得10
29秒前
30秒前
科研通AI5应助xch采纳,获得10
30秒前
damowang发布了新的文献求助10
31秒前
orixero应助Atticus采纳,获得10
31秒前
蜗居完成签到,获得积分10
32秒前
白瓜完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757