An Optimized LSTM-Based Augmented Language Model (FLSTM-ALM) Using Fox Algorithm for Automatic Essay Scoring Prediction

计算机科学 人工智能 算法 语言模型 语音识别 自然语言处理 机器学习
作者
Ridha Hussein Chassab,Lailatul Qadri Zakaria,Sabrina Tiun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 48713-48724 被引量:2
标识
DOI:10.1109/access.2024.3381619
摘要

The computer-based Automated Essay Scoring (AES) system automatically marks or scores student replies by considering relevant criteria. The methodology, which systematically categorizes writing quality, can increase operational effectiveness in academic and major commercial institutions. To study the projected score, AES relies on extracting numerous aspects from the student's response, including grammatical and textural information. However, the recovered features may result in dimensionality reduction and a challenging-to-understand feature selection procedure. As the number of parameters rises, the model also demands a large cost for processing and training the data. However, these problems worsen the accuracy of score prediction as a whole and widen the gap between actual and anticipated results. This study suggested the Fox-optimized Long Short-Term Memory-based Augmented Language Model (FLSTM-ALM) as a solution to these problems for giving successful training to text features; the model uses an augmented learning paradigm. The retrieval score was then analyzed and generated using a neural knowledge encoder and retriever. The neural model successfully classifies the output based on this score. The best features are then chosen using the fox optimization algorithm based on the food-searching category. This choice of parameters solves the exploration and optimization issue with document classification. The performance of the optimized AES system was assessed using the two datasets, ASAP and ETS, and it demonstrated a high accuracy of 98.92% and a low error rate of 0.096%. Dimensionality reduction can thus be fixed by optimizing the FLSTM-ALM model with an appropriate meta-heuristic method, such as the FOX algorithm, which raises the predicted accuracy, recall, and f1 score for the AES model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克林沙星完成签到,获得积分10
2秒前
Zx_1993应助xiaoGuo采纳,获得30
2秒前
fz完成签到,获得积分10
2秒前
那我完成签到,获得积分10
3秒前
3秒前
拼搏的帆布鞋完成签到,获得积分10
3秒前
3秒前
兔子应助少年游采纳,获得10
4秒前
poser完成签到,获得积分10
4秒前
夜夜发布了新的文献求助10
5秒前
6秒前
花灯发布了新的文献求助10
6秒前
FashionBoy应助日笙采纳,获得10
7秒前
哇哈哈发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助20
7秒前
8秒前
Ava应助rsy采纳,获得10
8秒前
9秒前
10秒前
poser发布了新的文献求助50
10秒前
Jasper应助刘彬采纳,获得10
10秒前
星辰大海应助彬墩墩采纳,获得10
10秒前
10秒前
王妍发布了新的文献求助10
11秒前
可爱山彤完成签到,获得积分10
12秒前
少年游完成签到,获得积分20
12秒前
12秒前
充电宝应助老年采纳,获得10
13秒前
Liquor发布了新的文献求助10
13秒前
Yanwenjun发布了新的文献求助10
14秒前
ZJ完成签到,获得积分20
14秒前
15秒前
LIAN发布了新的文献求助10
15秒前
15秒前
小蘑菇应助鹿友绿采纳,获得10
16秒前
ZJ发布了新的文献求助10
17秒前
科研通AI5应助夜夜采纳,获得10
17秒前
哇哈哈完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703717
求助须知:如何正确求助?哪些是违规求助? 4071055
关于积分的说明 12588289
捐赠科研通 3771527
什么是DOI,文献DOI怎么找? 2083203
邀请新用户注册赠送积分活动 1110446
科研通“疑难数据库(出版商)”最低求助积分说明 988335