亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Frequency and spatial based multi-layer context network (FSCNet) for remote sensing scene classification

空间语境意识 背景(考古学) 遥感 地理 图层(电子) 地图学 计算机科学 考古 有机化学 化学
作者
Wei Wang,Yujie Sun,Ji Li,Xin Wang
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:128: 103781-103781 被引量:18
标识
DOI:10.1016/j.jag.2024.103781
摘要

Remote Sensing Scene Classification (RSSC) is an important and challenging research topic due to the variety of land cover sizes and spatial combinations, as well as significant interclass similarity and intraclass variability. Currently, convolutional neural network (CNN)-based methods have been widely used in RSSC tasks with significant results. However, CNNs lack the ability to obtain long-term correlations. Transformer addressed this problem, thanks to the global receptive field of multi-head self-attention (MSA). Nevertheless, the vanilla transformer also needs further improvement to accommodate the diverse in type and scale of objects in RS scenes. In addition, the existing RSSC methods either use the last layer features, which is not conducive to process multi-scale remote sensing images, or directly fuse the multi-layer features, which will bring redundant or mutually exclusive information. To address the above issues, a novel RSSC framework, named frequency and spatial based multi-layer attention network (FSCNet) for remote sensing scene classification is proposed in this article. First, to fully extract the pyramid multi resolution features of CNN, a cross resolution injection model (CRIM) is proposed. Second, to generate better understand of the multilevel features, a frequency and spatial MLP (FS-MLP) is designed. Third, in order to aggregate contextual relations among multi-layer features, a multi-layer context align attention (MCAA) is adopted. The final classification is integration of top-layer feature and aggregated multi-layer feature. The experiment results on three well-known RS scene classification datasets (UCM, AID, and NWPU) prove the effectiveness of FSCNet and it outperforms many state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助优雅的凝阳采纳,获得10
1秒前
3秒前
8秒前
11秒前
刘坦苇发布了新的文献求助10
14秒前
SciGPT应助刘坦苇采纳,获得10
21秒前
32秒前
刘坦苇发布了新的文献求助10
37秒前
38秒前
39秒前
41秒前
Rocky_Qi发布了新的文献求助10
47秒前
53秒前
58秒前
1分钟前
Elthrai完成签到 ,获得积分10
1分钟前
1分钟前
敏敏9813完成签到,获得积分10
1分钟前
老老熊完成签到,获得积分10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小石榴的爸爸完成签到 ,获得积分10
3分钟前
3分钟前
小石榴爸爸完成签到 ,获得积分10
3分钟前
林夕完成签到 ,获得积分10
3分钟前
情怀应助雨落采纳,获得10
3分钟前
3分钟前
4分钟前
雨落发布了新的文献求助10
4分钟前
breeze发布了新的文献求助50
4分钟前
弈天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Rocky_Qi发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482484
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512357
什么是DOI,文献DOI怎么找? 2472920
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432591