亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High Index Non-Noble Metal Electrocatalysts for Electrochemical CO2 Reduction to C1 Products

催化作用 材料科学 电化学 甲酸 格式化 法拉第效率 化学工程 过渡金属 二氧化碳电化学还原 纳米技术 无机化学 电极 一氧化碳 化学 有机化学 物理化学 工程类
作者
Da Hye Won,Seong Ihl Woo,Hyungjun Kim,Yun Jeong Hwang,Byoung Koun Min
出处
期刊:Meeting abstracts 卷期号:MA2018-01 (31): 1827-1827
标识
DOI:10.1149/ma2018-01/31/1827
摘要

Accumulation of CO 2 in the atmosphere triggers abnormal weather phenomenon through global warming and greenhouse effect. To reduce the CO 2 concentration and its emission, extensive researches for CO 2 capture, storage, and utilization have been conducted. Among them, electrochemical CO 2 conversion is highly promising due to its ambient reaction conditions, high energy efficiency, and facile combination with other renewable energy source. However, because CO 2 is chemically stable, the principal obstacle is to develop suitable catalyst having good catalytic activity, selectivity, and stability. Among various metal candidates, transition and post-transition metals have attracted much attention due to its low-cost, low-toxicity, and intrinsic catalytic property for CO 2 reduction. Since general electrochemical catalysis is highly correlated with mass diffusion, crystal orientation, surface area, and conductivity, manipulating the catalyst structure is an effective method to improve catalytic performance. Furthermore, collaborative studies integrating experimental and theoretical approaches have been conducted for the investigation of CO 2 reduction mechanism and suggestion of a rational design of a CO 2 reduction catalyst. Herein, we developed hierarchical nanostructured Sn, Bi, and Zn electrodes as electrocatalysts for CO 2 reduction to C1 products (e.g., formic acid/formate and carbon monoxide). Various structured catalysts such as Sn dendrite, Bi dendrite, and hexagonal Zn were fabricated by facile electrodeposition methods. The synthesized catalyst electrodes showed highly efficient CO 2 reduction activity in terms of current density, Faradaic efficiency, and more importantly, stable performance during long-term operation. Sn dendrite and Bi dendrite electrodes exhibited a superior formate/formic acid production rates (Sn dendrite: 228.6 mmol h -1 cm -2 at -1.36 V RHE ) and high Faradaic efficiency (Bi dendrite: 90% at -0.73 V RHE ) without any considerable catalytic degradation during 18 h and 12 h of long-term operations, respectively. Furthermore, the hexagonal Zn catalyst showed a high CO selectivity up to ~95% during unprecedented long-time over 30 h. It is worth noted that their high selectivity towards CO 2 reduction is attributed to their local (or chemical) structures. In case of Sn electrode, we found that the native O content on the Sn surface is strongly correlated with the stabilization of reaction intermediate and the formate selectivity. To understand in-depth the factors to affect the CO 2 reduction, we further conducted the theoretical studies about the mechanism of CO 2 conversion to formic acid on various Bi planes such as close-packed and high-index surfaces using density functional theory calculation (DFT). We demonstrated that the most energetically favorable pathway was a path through the formation of oxygen bidentate intermediate (*OCOH) among the three possible pathways for formic acid formation. In addition, it was also revealed that the high-index Bi surfaces exhibited the lower reduction potential than the closed-packed surface of (003) plane. Similarly, in electrochemical analysis using Zn electrodes, it was figured out that Zn (101) facet was favorable to CO formation whereas Zn (002) facet, most stable surface, favors the H 2 evolution during CO 2 electrolysis. Indeed, DFT calculations showed that Zn (101) facet lowers the reduction potential for CO 2 to CO by more effectively stabilizing a *COOH intermediate than Zn (002) facet. Consequently, the coordinately unsaturated sites derived from the nanostructured non-noble metal catalysts can effectively stabilize the reaction intermediate by lowering the energy barrier for its binding to the site. These results may suggest a design principle for further developments in other advanced catalysts as well as in CO 2 reduction. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
24秒前
Omni发布了新的文献求助10
24秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
CipherSage应助xwz626采纳,获得10
1分钟前
慕青应助lwstardust采纳,获得10
2分钟前
2分钟前
2分钟前
xwz626发布了新的文献求助10
2分钟前
xwz626完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
null应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Artin发布了新的文献求助200
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
Benhnhk21发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
lwstardust完成签到,获得积分10
4分钟前
lwstardust发布了新的文献求助10
4分钟前
4分钟前
4分钟前
草木完成签到 ,获得积分10
4分钟前
Benhnhk21发布了新的文献求助10
4分钟前
YJX完成签到,获得积分10
4分钟前
4分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Artin完成签到,获得积分10
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
Tingjiang发布了新的文献求助30
5分钟前
科研通AI5应助两两采纳,获得10
5分钟前
子春完成签到 ,获得积分10
6分钟前
6分钟前
两两发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4304401
求助须知:如何正确求助?哪些是违规求助? 3827439
关于积分的说明 11979601
捐赠科研通 3468428
什么是DOI,文献DOI怎么找? 1902215
邀请新用户注册赠送积分活动 949794
科研通“疑难数据库(出版商)”最低求助积分说明 851781