已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constrained Tiny Machine Learning for Predicting Gas Concentration with I4.0 Low-cost Sensors

计算机科学 人工智能 机器学习
作者
Mohammed El Adoui,Thomas Herpoel,Benoît Frénay‬
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:23 (3): 1-23 被引量:3
标识
DOI:10.1145/3590956
摘要

Low-cost gas sensors (LCS) often produce inaccurate measurements due to varying environmental conditions that are not consistent with laboratory settings, leading to inadequate productivity levels compared to high-quality sensors. To address this issue, we propose the use of Machine Learning (ML) to predict accurate concentrations of pollutant gases acquired by LCS integrated into an embedded Internet of Things platform. However, a key challenge is to optimize an accurate ML design under low memory and computation power constraints of microcontrollers (MCUs) while maintaining accurate ML scores. After data analysis and pre-processing, we assess and analyze the performance of five ML algorithms to predict the concentration of pollutants gases from multiple specifications (weather, presence of other gases, etc.). To support the experiments, datasets from three sources are used: (1) VOCSens, (2) Belgian Interregional Environment Agency cell, and (3) Visual-Crossing. Once the best model was optimized and validated, multiple hard constraints were added to the selected ML structure to satisfy material and expert requirements. Trained models were ported to be implemented locally in a MCU after comparing several porting libraries. The assembled code obtained is evaluated based on two metrics: storage memory consumption and inference time, relative to the highest attainable capacities. The improved random forest is the best ML model for the used dataset with an R2 score meeting of 0.72 and Root Means Square Error of 0.0028 ppm. The best generated Tiny-ML model needs 3% of RAM and 98% of Flash storage. The empirical results prove that the developed ML algorithm applied to LCS provides high accuracy to predict pollutant gases. This algorithm can also be used to adjust the LCS systems to provide calibrated data in real time, even if the platform being used is not particularly advanced or powerful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒霜扬名完成签到 ,获得积分10
1秒前
chenwuhao完成签到 ,获得积分10
2秒前
rofsc完成签到 ,获得积分10
2秒前
XRENG85发布了新的文献求助30
3秒前
zzz完成签到 ,获得积分10
3秒前
圆彰七大完成签到 ,获得积分10
4秒前
香蕉觅云应助liuyux采纳,获得10
6秒前
6秒前
yangjoy完成签到 ,获得积分10
7秒前
医疗废物专用车乘客完成签到,获得积分10
7秒前
火星的雪完成签到 ,获得积分0
7秒前
科研通AI5应助小叶同学采纳,获得10
9秒前
Dreamchaser完成签到,获得积分20
9秒前
ywzwszl完成签到,获得积分0
11秒前
12秒前
安详的尔岚完成签到,获得积分10
14秒前
思源应助Jackie采纳,获得10
15秒前
今后应助和谐的墨镜采纳,获得10
17秒前
笑点低的悒完成签到 ,获得积分10
18秒前
流水z完成签到 ,获得积分10
18秒前
柚C美式完成签到 ,获得积分10
19秒前
隐形曼青应助牛牛向前冲采纳,获得10
19秒前
我爱科研科研爱我完成签到 ,获得积分10
21秒前
123完成签到,获得积分10
21秒前
laxy发布了新的文献求助10
22秒前
可爱的函函应助lxl220采纳,获得10
24秒前
晗晗完成签到 ,获得积分10
24秒前
大猪完成签到 ,获得积分10
24秒前
BA1完成签到,获得积分10
24秒前
贪玩惜文完成签到 ,获得积分10
25秒前
STEAM发布了新的文献求助20
26秒前
春日奶黄包完成签到 ,获得积分10
27秒前
27秒前
搜集达人应助姜玉晴采纳,获得30
27秒前
Connor完成签到,获得积分10
28秒前
28秒前
28秒前
别当真完成签到 ,获得积分10
29秒前
wenlong完成签到 ,获得积分10
30秒前
www完成签到 ,获得积分10
31秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4638988
求助须知:如何正确求助?哪些是违规求助? 4032305
关于积分的说明 12475429
捐赠科研通 3719459
什么是DOI,文献DOI怎么找? 2052736
邀请新用户注册赠送积分活动 1083963
科研通“疑难数据库(出版商)”最低求助积分说明 965837