Adaptive Traffic Signal Control With Deep Reinforcement Learning and High Dimensional Sensory Inputs: Case Study and Comprehensive Sensitivity Analyses

强化学习 灵敏度(控制系统) 计算机科学 感觉系统 信号(编程语言) 自适应控制 人工智能 工程类 机器学习 控制(管理) 神经科学 心理学 电子工程 程序设计语言
作者
Soheil Mohamad Alizadeh Shabestary,Baher Abdulhai
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 20021-20035 被引量:26
标识
DOI:10.1109/tits.2022.3179893
摘要

Despite the constant rise in global urban populations and subsequent rise in transportation demand, significant expansion of infrastructure has been hampered by the constraints of space, cost, and environmental concerns. Therefore, optimizing the efficiency of existing infrastructure is becoming increasingly important. Adaptive traffic signal controllers aim to provide demand-responsive strategies to minimize motorists’ delay and achieve higher throughput at signalized intersections. With the advent of new sensory technologies and more intelligent control methods, the contribution of this paper is an adaptive traffic signal controller able to receive un-preprocessed high-dimensional sensory information such as GPS traces from connected vehicles and self-learn to minimize intersection delays. We use deep neural networks to operate directly on detailed sensory inputs and feed them into a reinforcement learning-based optimal control agent. The integration of these two components is known as deep learning. Using deep learning, we achieve two goals: (1) We eliminate the need for handcrafting a feature extraction process such as determining queue lengths, which is challenging and location-specific, and (2) we achieve better performance and faster training times compared to conventional tabular reinforcement learning approaches. We test our proposed controller against a tabular reinforcement learning agent, a reinforcement learning agent with a fully-connected Neural Network as a function approximator, and a state-of-practice, actuated traffic signal controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungLee发布了新的文献求助10
刚刚
急急急完成签到,获得积分10
刚刚
Han完成签到,获得积分10
1秒前
超级的三问完成签到,获得积分10
1秒前
U2完成签到,获得积分10
1秒前
Exile完成签到,获得积分10
1秒前
daheeeee完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
小艾完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
故酒应助Jeffery426采纳,获得10
2秒前
老干部发布了新的文献求助10
3秒前
dhts完成签到,获得积分10
3秒前
4秒前
活泼啤酒完成签到 ,获得积分10
4秒前
whl完成签到,获得积分10
4秒前
4秒前
小项发布了新的文献求助30
5秒前
研友_8RlQ2n完成签到,获得积分10
5秒前
OuHou完成签到 ,获得积分10
5秒前
zqzyyds完成签到,获得积分20
5秒前
5秒前
Jess留下了新的社区评论
5秒前
feiying88完成签到,获得积分10
6秒前
6秒前
Dream完成签到,获得积分10
6秒前
平淡的文龙完成签到,获得积分10
6秒前
6秒前
阳光绝山完成签到,获得积分20
7秒前
讨厌胡萝卜完成签到,获得积分10
7秒前
marigold完成签到,获得积分10
7秒前
1111完成签到,获得积分10
7秒前
有魅力的沧海完成签到 ,获得积分10
7秒前
月下天成完成签到,获得积分10
9秒前
爱吃冬瓜完成签到,获得积分10
9秒前
李健的小迷弟应助麻薯采纳,获得10
9秒前
阳光绝山发布了新的文献求助10
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792855
求助须知:如何正确求助?哪些是违规求助? 3337361
关于积分的说明 10284619
捐赠科研通 3054083
什么是DOI,文献DOI怎么找? 1675772
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761548