M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions

情态动词 功率(物理) 计算机科学 图形 网格 风力发电 电力系统 人工智能 机器学习 工程类 物理 电气工程 理论计算机科学 数学 量子力学 高分子化学 化学 几何学
作者
Lei Wang,Yigang He
出处
期刊:Applied Energy [Elsevier BV]
卷期号:324: 119672-119672 被引量:21
标识
DOI:10.1016/j.apenergy.2022.119672
摘要

In recent years, wind power has continued to emerge as a key source of renewable energy. When large-scale wind farm clusters are connected to the grid for power generation, accurate multi-location ultra-short-term wind power predictions carry significant value in terms of ensuring the safety, stability, and economical operation of the power system. However, there are complex temporal and spatial correlations among multiple wind farms in multiple locations, which makes wind power predictions involving wind farm clusters very challenging. The development of artificial intelligence technology, especially graph machine learning, provides new approaches for modeling such spatiotemporal correlations. In addition, compared with single-step forecasting, multi-step forecasting can better reflect the general situation, and thus, it is more widely applicable in reality. To optimize multi-step wind power predictions in multiple locations, this report proposes a Multi-Modal Multi-Task Spatiotemporal Attention Network (M2STAN) model. The developed model employs a graph attention network and a bidirectional gated recurrent unit (Bi-GRU) to model the spatial and temporal dependence, respectively. In addition, the introduction of multi-modal and multi-task learning strategies improves the accuracy and computational efficiency of this predictive model. The results indicate that the proposed method is superior to existing methods, including support vector regression, Bi-GRU, multi-modal multi-task graph spatiotemporal networks, and graph convolutional deep learning architectures in terms of prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
Alexander L应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
cdercder应助科研通管家采纳,获得20
1秒前
传奇3应助luckily采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助wzh采纳,获得10
1秒前
韶华舞光年完成签到,获得积分10
2秒前
ysy完成签到,获得积分10
3秒前
4秒前
cis2014发布了新的文献求助10
5秒前
5秒前
小小发布了新的文献求助10
10秒前
10秒前
曾经谷云发布了新的文献求助10
10秒前
11秒前
MAIDANG完成签到,获得积分10
12秒前
13秒前
shimhjy应助zby采纳,获得20
13秒前
luckily发布了新的文献求助10
14秒前
15秒前
xiaozhejia完成签到,获得积分10
17秒前
虚拟的怀绿完成签到,获得积分10
19秒前
刘屿柠发布了新的文献求助10
19秒前
xxx完成签到 ,获得积分10
20秒前
斯文败类应助Wu_H采纳,获得10
24秒前
领导范儿应助韶华舞光年采纳,获得10
25秒前
所所应助Skye采纳,获得10
25秒前
传奇3应助刘屿柠采纳,获得10
25秒前
微某某完成签到 ,获得积分10
28秒前
wanci应助如风随水采纳,获得10
28秒前
32秒前
顾矜应助简单的大白采纳,获得10
34秒前
34秒前
34秒前
LF-Scie完成签到,获得积分10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642