FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling

计算机科学 Boosting(机器学习) 采样(信号处理) 主观视频质量 人工智能 视频质量 深度学习 质量(理念) 数据挖掘 机器学习 计算机工程 实时计算 图像质量 计算机视觉 图像(数学) 公制(单位) 运营管理 滤波器(信号处理) 经济 哲学 认识论
作者
Haoning Wu,Chaofeng Chen,Jingwen Hou,Liang Liao,Annan Wang,Wenxiu Sun,Qiong Yan,Weisi Lin
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2207.02595
摘要

Current deep video quality assessment (VQA) methods are usually with high computational costs when evaluating high-resolution videos. This cost hinders them from learning better video-quality-related representations via end-to-end training. Existing approaches typically consider naive sampling to reduce the computational cost, such as resizing and cropping. However, they obviously corrupt quality-related information in videos and are thus not optimal for learning good representations for VQA. Therefore, there is an eager need to design a new quality-retained sampling scheme for VQA. In this paper, we propose Grid Mini-patch Sampling (GMS), which allows consideration of local quality by sampling patches at their raw resolution and covers global quality with contextual relations via mini-patches sampled in uniform grids. These mini-patches are spliced and aligned temporally, named as fragments. We further build the Fragment Attention Network (FANet) specially designed to accommodate fragments as inputs. Consisting of fragments and FANet, the proposed FrAgment Sample Transformer for VQA (FAST-VQA) enables efficient end-to-end deep VQA and learns effective video-quality-related representations. It improves state-of-the-art accuracy by around 10% while reducing 99.5% FLOPs on 1080P high-resolution videos. The newly learned video-quality-related representations can also be transferred into smaller VQA datasets, boosting performance in these scenarios. Extensive experiments show that FAST-VQA has good performance on inputs of various resolutions while retaining high efficiency. We publish our code at https://github.com/timothyhtimothy/FAST-VQA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zhangxi发布了新的文献求助10
2秒前
zhenyu发布了新的文献求助10
3秒前
3秒前
ygg应助Ai采纳,获得10
3秒前
FashionBoy应助zyf采纳,获得10
5秒前
5秒前
陈佳欣发布了新的文献求助10
5秒前
Hermione发布了新的文献求助10
5秒前
奋斗语柳完成签到,获得积分20
5秒前
斯文败类应助小努力采纳,获得10
6秒前
6秒前
月亮完成签到,获得积分10
6秒前
深情安青应助doctorbba采纳,获得30
7秒前
科研通AI2S应助YuF采纳,获得10
7秒前
8秒前
9秒前
糯米团完成签到,获得积分10
9秒前
牛奶加咖啡完成签到,获得积分10
9秒前
小景007完成签到,获得积分10
9秒前
Orange应助小赞采纳,获得30
10秒前
超帅的怡发布了新的文献求助10
10秒前
1234完成签到,获得积分10
10秒前
布吉岛呀发布了新的文献求助10
11秒前
11秒前
lala发布了新的文献求助10
12秒前
申贺臣发布了新的文献求助10
13秒前
活泼的番茄完成签到,获得积分10
14秒前
14秒前
充电宝应助风yiya采纳,获得10
14秒前
15秒前
15秒前
Akim应助小张采纳,获得10
15秒前
飞飞完成签到,获得积分10
15秒前
16秒前
Hermione完成签到,获得积分10
16秒前
16秒前
超帅的怡完成签到,获得积分10
16秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150