计算机科学
Boosting(机器学习)
采样(信号处理)
主观视频质量
人工智能
视频质量
深度学习
质量(理念)
数据挖掘
机器学习
计算机工程
实时计算
图像质量
计算机视觉
图像(数学)
公制(单位)
运营管理
滤波器(信号处理)
经济
哲学
认识论
作者
Haoning Wu,Chaofeng Chen,Jingwen Hou,Liang Liao,Annan Wang,Wenxiu Sun,Qiong Yan,Weisi Lin
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2207.02595
摘要
Current deep video quality assessment (VQA) methods are usually with high computational costs when evaluating high-resolution videos. This cost hinders them from learning better video-quality-related representations via end-to-end training. Existing approaches typically consider naive sampling to reduce the computational cost, such as resizing and cropping. However, they obviously corrupt quality-related information in videos and are thus not optimal for learning good representations for VQA. Therefore, there is an eager need to design a new quality-retained sampling scheme for VQA. In this paper, we propose Grid Mini-patch Sampling (GMS), which allows consideration of local quality by sampling patches at their raw resolution and covers global quality with contextual relations via mini-patches sampled in uniform grids. These mini-patches are spliced and aligned temporally, named as fragments. We further build the Fragment Attention Network (FANet) specially designed to accommodate fragments as inputs. Consisting of fragments and FANet, the proposed FrAgment Sample Transformer for VQA (FAST-VQA) enables efficient end-to-end deep VQA and learns effective video-quality-related representations. It improves state-of-the-art accuracy by around 10% while reducing 99.5% FLOPs on 1080P high-resolution videos. The newly learned video-quality-related representations can also be transferred into smaller VQA datasets, boosting performance in these scenarios. Extensive experiments show that FAST-VQA has good performance on inputs of various resolutions while retaining high efficiency. We publish our code at https://github.com/timothyhtimothy/FAST-VQA.
科研通智能强力驱动
Strongly Powered by AbleSci AI