A prognostic model constructed by CTHRC1 and LRFN4 in Stomach adenocarcinoma by Bioinformatics Analysis

医学 内科学 列线图 肿瘤科 癌症 腺癌 癌症研究 转移 免疫组织化学 生存分析
作者
Songling Han,Wei Zhu,Qijie Guan,Zhuoheng Zhong,Ruoke Zhao,Hangming Xiong,Hongwei Fu,Xingjiang Hu,Jingkui Tian
标识
DOI:10.21203/rs.3.rs-52939/v1
摘要

Abstract Background Stomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study specifically aimed to identify potential biomarkers and reveal the underlying molecular mechanisms. Methods Gene expression profiles microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The ‘limma’ R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The data of STAD cases with both RNA sequencing and clinical information of The Cancer Genome Atlas (TCGA) were obtained from Genomic Data Commons (GDC) data portal. Survival curves were analyzed by the Kaplan-Meier method, univariate Cox regression analysis and multivariate Cox regression were performed using ‘survival’ package. CIBERSORT algorithm used approach to characterize the 22 human immune cell composition. Gene expression profiles microarray data and clinical information were downloaded from GEO database to validate prognostic model. Results Three public datasets including 90 STAD patients and 43 healthy controls were used and 44 genes were differentially expressed in all three datasets. These genes were primarily implicated in biological processes including cell adhesion, wound healing and extracellular matrix organization. Seven out of 44 genes showed significant survival differences based on their expression differences. CTHRC1 and LRFN4 were eventually used to constructed risk score and prognostic model by univariate Cox regression and stepwise multivariate Cox regression in The Cancer Genome Atlas (TCGA)-STAD dataset. The group having high risk scores and the group having low risk scores had significant differences in the infiltration level of multiple immune cells including CD4 memory resting T cells, M2 macrophages, memory B cells, resting dendritic cells, eosinophils, and gamma delta T cells. Multivariate Cox regression analyses indicated that the risk score was an independent predictor after adjusting for age, sex, and tumor stage. At last, the model was verified and evaluated by another independent dataset and showed a good classification effect. Conclusions The present study constructed the prognostic model by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which may provide clinical guidance and potential therapeutic targets for STAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
共享精神应助杜先生采纳,获得10
1秒前
啊哈哈完成签到 ,获得积分10
2秒前
顾矜应助吴帆采纳,获得20
2秒前
hhhhh发布了新的文献求助10
2秒前
娃娃菜完成签到,获得积分10
3秒前
wjy321发布了新的文献求助10
3秒前
蓝兰完成签到,获得积分10
3秒前
4秒前
Jan发布了新的文献求助10
4秒前
4秒前
pp63应助甜甜圈采纳,获得10
5秒前
肖先生发布了新的文献求助10
5秒前
Hello应助atmorz采纳,获得10
5秒前
领导范儿应助倩倩采纳,获得30
6秒前
平常的梦完成签到,获得积分10
7秒前
科研通AI5应助lily336699采纳,获得10
7秒前
上官若男应助咸鱼好翻身采纳,获得10
8秒前
静静发布了新的文献求助10
9秒前
林距离完成签到 ,获得积分10
9秒前
tangli完成签到 ,获得积分10
10秒前
10秒前
123456发布了新的文献求助10
10秒前
luxiaoyu发布了新的文献求助50
11秒前
头与木完成签到,获得积分10
11秒前
完美世界应助木子采纳,获得10
11秒前
taipingyang完成签到,获得积分10
12秒前
Timing完成签到,获得积分10
12秒前
天上掉下篇NCS完成签到,获得积分10
12秒前
Assure完成签到,获得积分10
13秒前
13秒前
肖先生完成签到,获得积分10
13秒前
Jasper应助Casson采纳,获得10
14秒前
ZHN完成签到,获得积分10
14秒前
15秒前
yiyi完成签到,获得积分10
15秒前
魏清芦完成签到,获得积分10
15秒前
Ava应助陈子皮boy采纳,获得50
17秒前
17秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889