Liquid-like VASP condensates drive actin polymerization and dynamic bundling

蛋白质丝 丝状体 肌动蛋白 捆绑 踏步 生物物理学 化学 材料科学 微丝 细胞骨架 生物 细胞 复合材料 生物化学
作者
Kristin Graham,Aravind Chandrasekaran,Liping Wang,Aly Ladak,Eileen M. Lafer,Padmini Rangamani,Jeanne C. Stachowiak
标识
DOI:10.1101/2022.05.09.491236
摘要

ABSTRACT The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet’s surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11112222发布了新的文献求助10
刚刚
wangdong发布了新的文献求助10
1秒前
1秒前
miaomiao发布了新的文献求助10
2秒前
流川枫完成签到,获得积分10
3秒前
3秒前
李可完成签到,获得积分20
4秒前
4秒前
RAmos_1982完成签到,获得积分10
6秒前
mm完成签到,获得积分10
6秒前
李牧应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
syc应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
wangdong完成签到,获得积分0
10秒前
马浩发布了新的文献求助10
10秒前
九日完成签到,获得积分10
10秒前
坤坤发布了新的文献求助10
11秒前
醒醒关注了科研通微信公众号
11秒前
清脆慕山发布了新的文献求助30
13秒前
13秒前
luyang应助跳跃的千柳采纳,获得20
15秒前
15秒前
11112222关注了科研通微信公众号
17秒前
yusong发布了新的文献求助10
19秒前
洛伦佐Lorenzo完成签到 ,获得积分10
19秒前
Hello应助MWT采纳,获得10
19秒前
脑洞疼应助Raye采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4762057
求助须知:如何正确求助?哪些是违规求助? 4101764
关于积分的说明 12692293
捐赠科研通 3817765
什么是DOI,文献DOI怎么找? 2107335
邀请新用户注册赠送积分活动 1131993
关于科研通互助平台的介绍 1011057