材料科学
欧姆接触
光电子学
等效串联电阻
接触电阻
氧化锡
氧化物
电流密度
阳极
兴奋剂
电压
图层(电子)
电极
纳米技术
化学
电气工程
冶金
物理
工程类
量子力学
物理化学
作者
Joao O. Mendes,Enrico Della Gaspera,Joel van Embden
出处
期刊:Solar RRL
[Wiley]
日期:2022-05-17
卷期号:6 (8)
被引量:8
标识
DOI:10.1002/solr.202200265
摘要
Herein, an in‐depth experimental investigation into the effect of employing different high resistance metal oxide (HRMO) layers on the quality of the front contact in solar cells with an fluorine‐doped tin oxide (FTO)/(HRMO)/CdS/Sb 2 Se 3 /Au device architecture is presented. The application of ZnO or TiO 2 HRMO layers between FTO substrates and CdS improves the overall device performance. Short‐circuit current gains of ≈20%, orders of magnitude higher shunt resistances (≈10 4 Ω cm 2 ), and greatly improved device stabilities—maintaining over 95% of their initial efficiency over 137 days are observed. A suppression of the unfavorable (120) orientation of the photoactive Sb 2 Se 3 layer is observed in devices with HRMO interlayers. The application of HRMO layers is crucial to prevent both ohmic and non‐ohmic current leaks and maintain device stability over time. Cross‐over in the current‐voltage ( JV ) curves observed in the case of TiO 2 indicates the presence of a high barrier for the diode current in these devices. Wavelength‐dependent JV curves coupled with capacitance measurements and simulations show that this barrier can be attributed to a high density of interfacial acceptor states. In contrast, ZnO deposition is found to reduce interface defects and enhance the quality of the front contact, while boosting performance and increasing device longevity.
科研通智能强力驱动
Strongly Powered by AbleSci AI