清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The control of compound inflorescences: insights from grasses and legumes

花序 生物 植物生物学 分生组织 进化生物学 植物 开枪
作者
Jinshun Zhong,Fanjiang Kong
出处
期刊:Trends in Plant Science [Elsevier BV]
卷期号:27 (6): 564-576 被引量:11
标识
DOI:10.1016/j.tplants.2021.12.002
摘要

Inflorescences, with remarkable variation in their branching patterns, are a great system to investigate the development and evolution of biological complexity. Specialized inflorescence-like structures in some plant lineages, such as spikelets in grasses and secondary inflorescences (I2s) in legumes, self-repeat as fundamental units and form compound inflorescences, representing structural innovations towards the development and evolution of inflorescence complexity and diversity. The TFL1-FUL/AGL79-AP2 module harbors conserved function in the regulation of identity and/or indeterminacy of inflorescence meristems. The identity of the higher-order repetitive inflorescence-like modules are specified by both conserved and divergent factors in grasses and legumes. Variation is found within the fundamental units between species in grasses and legumes and regulated by distinct molecules. A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity. A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity. similarities due to independent origins, may be caused by similar (also known as parallelism) and different (a narrow definition of convergence sensu stricto) mechanisms. an inflorescence is determinate if its continuous growth is terminated by the formation of a terminal flower or inflorescence-like structure. genes that are similar by sequence identity and derived from a common ancestor. an indeterminate inflorescence has an undifferentiated shoot apical meristem. a flower-bearing structure in flowering plants. a module consists of a set of independent units that can form a more complex structure. genes that share a common ancestry due to speciation. homologous genes that are derived from a duplication event. the principal axis of an inflorescence that has a main shoot apical meristem in the top. also known as pseudoraceme and fascicle in legumes, an I2 is a specialized inflorescence-like structure that emerges from the primary inflorescence and bears flowers directly along its axis. An I2 functions as a basic repetitive unit of the compound inflorescences in legumes. the very tip of a shoot that houses a pool of stem cells that literally give rise to the bulk of the aerial organs of a plant. It is called inflorescence shoot apical meristem (IM) after transition from vegetative to reproductive growth. a little spike in grasses [i.e., a specialized short-branch inflorescence that contains one to several small flowers (i.e., florets)].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助xiaoyi采纳,获得10
31秒前
研友_ZzrWKZ完成签到 ,获得积分10
35秒前
ccc完成签到 ,获得积分10
46秒前
LZQ完成签到,获得积分0
54秒前
SH123完成签到 ,获得积分10
57秒前
虚灵完成签到 ,获得积分10
1分钟前
董昌铭发布了新的文献求助10
1分钟前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
董昌铭完成签到 ,获得积分10
1分钟前
beplayer1完成签到 ,获得积分10
1分钟前
1分钟前
大傻春完成签到 ,获得积分10
1分钟前
vbnn完成签到 ,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
Square完成签到,获得积分10
2分钟前
雪上一枝蒿完成签到,获得积分10
2分钟前
雪流星完成签到 ,获得积分10
2分钟前
喔喔佳佳L完成签到 ,获得积分10
3分钟前
3分钟前
xiaoyi发布了新的文献求助10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
赖问筠完成签到 ,获得积分10
3分钟前
15860936613完成签到 ,获得积分10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分0
3分钟前
3分钟前
璇璇完成签到 ,获得积分10
4分钟前
jlwang完成签到,获得积分10
4分钟前
旅程完成签到 ,获得积分10
4分钟前
LeoBigman完成签到 ,获得积分10
4分钟前
nav完成签到 ,获得积分10
4分钟前
田様应助xiaoyi采纳,获得10
5分钟前
柯伊达完成签到 ,获得积分10
5分钟前
害羞的裘完成签到 ,获得积分10
5分钟前
cdercder应助科研通管家采纳,获得20
5分钟前
DJ_Tokyo完成签到,获得积分10
5分钟前
ii完成签到 ,获得积分10
5分钟前
禾禾完成签到 ,获得积分10
5分钟前
6分钟前
西山菩提完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776014
求助须知:如何正确求助?哪些是违规求助? 3321534
关于积分的说明 10206239
捐赠科研通 3036609
什么是DOI,文献DOI怎么找? 1666392
邀请新用户注册赠送积分活动 797395
科研通“疑难数据库(出版商)”最低求助积分说明 757805