Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1542
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利锋完成签到,获得积分10
刚刚
在水一方应助017采纳,获得10
1秒前
bb完成签到,获得积分10
1秒前
1秒前
wu完成签到,获得积分10
1秒前
123654完成签到,获得积分10
2秒前
研友_nPxRRn发布了新的文献求助10
2秒前
3秒前
3秒前
搜集达人应助光亮天蓉采纳,获得10
3秒前
nozero应助发嗲的天问采纳,获得50
5秒前
爱听歌澜完成签到,获得积分10
5秒前
啦啦咔嘞完成签到,获得积分10
5秒前
丘比特应助bofu采纳,获得10
6秒前
6秒前
科研助手6应助谨慎枫叶采纳,获得10
7秒前
7秒前
8秒前
充电宝应助绝不熬夜到2点采纳,获得10
8秒前
我是老大应助m1采纳,获得10
8秒前
隐形曼青应助smottom采纳,获得10
9秒前
10秒前
11秒前
Try_1完成签到,获得积分10
11秒前
15327432191完成签到 ,获得积分10
11秒前
青藤发布了新的文献求助10
11秒前
柒月发布了新的文献求助10
12秒前
12秒前
12秒前
公西行天完成签到,获得积分10
13秒前
科研通AI2S应助研友_nPxRRn采纳,获得10
13秒前
14秒前
六六是本人完成签到 ,获得积分10
14秒前
15秒前
标致的问晴完成签到,获得积分10
15秒前
djx123发布了新的文献求助10
15秒前
017发布了新的文献求助10
15秒前
16秒前
16秒前
XIAOMU发布了新的文献求助10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472