Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images

计算机科学 人工智能 目标检测 卷积神经网络 特征学习 深度学习 计算机视觉 不变(物理) 视觉对象识别的认知神经科学 模式识别(心理学) 特征提取 数学 数学物理
作者
Gong Cheng,Peicheng Zhou,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7405-7415 被引量:1564
标识
DOI:10.1109/tgrs.2016.2601622
摘要

Object detection in very high resolution optical remote sensing images is a fundamental problem faced for remote sensing image analysis. Due to the advances of powerful feature representations, machine-learning-based object detection is receiving increasing attention. Although numerous feature representations exist, most of them are handcrafted or shallow-learning-based features. As the object detection task becomes more challenging, their description capability becomes limited or even impoverished. More recently, deep learning algorithms, especially convolutional neural networks (CNNs), have shown their much stronger feature representation power in computer vision. Despite the progress made in nature scene images, it is problematic to directly use the CNN feature for object detection in optical remote sensing images because it is difficult to effectively deal with the problem of object rotation variations. To address this problem, this paper proposes a novel and effective approach to learn a rotation-invariant CNN (RICNN) model for advancing the performance of object detection, which is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing CNN architectures. However, different from the training of traditional CNN models that only optimizes the multinomial logistic regression objective, our RICNN model is trained by optimizing a new objective function via imposing a regularization constraint, which explicitly enforces the feature representations of the training samples before and after rotating to be mapped close to each other, hence achieving rotation invariance. To facilitate training, we first train the rotation-invariant layer and then domain-specifically fine-tune the whole RICNN network to further boost the performance. Comprehensive evaluations on a publicly available ten-class object detection data set demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freeway完成签到,获得积分10
1秒前
nanostu完成签到,获得积分10
1秒前
吐司炸弹完成签到,获得积分10
1秒前
儒雅的若翠完成签到,获得积分10
2秒前
hyjcs完成签到,获得积分0
2秒前
mayfly完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
inu1255完成签到,获得积分0
3秒前
不吃鱼的猫完成签到,获得积分10
3秒前
鹏举瞰冷雨完成签到,获得积分10
3秒前
Amikacin完成签到,获得积分10
3秒前
4秒前
皮皮完成签到 ,获得积分10
6秒前
加菲丰丰完成签到,获得积分0
8秒前
龙抬头完成签到,获得积分10
8秒前
JOKY完成签到 ,获得积分10
9秒前
9秒前
金枪鱼子发布了新的文献求助10
11秒前
gzf213完成签到,获得积分10
13秒前
瑾玉完成签到,获得积分10
17秒前
缓慢海蓝完成签到 ,获得积分10
19秒前
积极的蘑菇完成签到 ,获得积分10
23秒前
无私小小完成签到,获得积分10
25秒前
28秒前
29秒前
wxxz完成签到,获得积分10
30秒前
威武红酒完成签到 ,获得积分10
30秒前
双碳小王子完成签到,获得积分10
31秒前
www完成签到 ,获得积分10
31秒前
韭菜盒子发布了新的文献求助10
32秒前
SCI完成签到 ,获得积分10
34秒前
keyan完成签到 ,获得积分10
35秒前
格子完成签到,获得积分10
35秒前
hzl完成签到,获得积分10
35秒前
梅花易数完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
chenmeimei2012完成签到 ,获得积分10
38秒前
那时年少完成签到,获得积分10
40秒前
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015