Pro–Surfactant Protein B As a Biomarker for Lung Cancer Prediction

医学 生物标志物 肺癌 肺表面活性物质 癌症 内科学 肿瘤科 癌症研究 生物化学 生物
作者
Don D. Sin,Martin C. Tammemägi,Stephen Lam,Matt J. Barnett,Xiaobo Duan,Anthony Raymond Tam,Heidi Auman,Ziding Feng,Gary E. Goodman,Samir Hanash,Ayumu Taguchi
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:31 (36): 4536-4543 被引量:92
标识
DOI:10.1200/jco.2013.50.6105
摘要

Preliminary studies have identified pro-surfactant protein B (pro-SFTPB) to be a promising blood biomarker for non-small-cell lung cancer. We conducted a study to determine the independent predictive potential of pro-SFTPB in identifying individuals who are subsequently diagnosed with lung cancer.Pro-SFTPB levels were measured in 2,485 individuals, who enrolled onto the Pan-Canadian Early Detection of Lung Cancer Study by using plasma sample collected at the baseline visit. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB in addition to known lung cancer risk factors. Calibration and discrimination were evaluated, the latter by an area under the receiver operating characteristic curve (AUC). External validation was performed with samples collected in the Carotene and Retinol Efficacy Trial (CARET) participants using a case-control study design.Adjusted for age, sex, body mass index, personal history of cancer, family history of lung cancer, forced expiratory volume in one second percent predicted, average number of cigarettes smoked per day, and smoking duration, pro-SFTPB (log transformed) had an odds ratio of 2.220 (95% CI, 1.727 to 2.853; P < .001). The AUCs of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95% CI, 0.620 to 0.717; difference in AUC P < .001). In the CARET Study, the use of pro-SFPTB yielded an AUC of 0.683 (95% CI, 0.604 to 0.761).Pro-SFTPB in plasma is an independent predictor of lung cancer and may be a valuable addition to existing lung cancer risk prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随风而动123完成签到,获得积分10
2秒前
好好好完成签到 ,获得积分10
3秒前
帕金森完成签到,获得积分10
3秒前
4秒前
壮观的画笔完成签到 ,获得积分10
4秒前
6秒前
魁梧的鸿煊完成签到 ,获得积分10
7秒前
tataq完成签到,获得积分10
7秒前
爆米花应助橘子采纳,获得10
7秒前
飞云发布了新的文献求助10
8秒前
热心乌完成签到,获得积分0
10秒前
tataq发布了新的文献求助10
11秒前
11秒前
朱先生完成签到 ,获得积分10
11秒前
12秒前
SYLH应助guoguo采纳,获得10
12秒前
小羊发布了新的文献求助10
14秒前
15秒前
16秒前
脑洞疼应助tataq采纳,获得10
18秒前
18秒前
haha发布了新的文献求助10
18秒前
FashionBoy应助你怎么讨厌采纳,获得10
20秒前
22秒前
青寻发布了新的文献求助10
22秒前
十九完成签到,获得积分10
23秒前
24秒前
wcwzcz完成签到,获得积分10
25秒前
幸福立果完成签到 ,获得积分10
26秒前
Jasper应助飞云采纳,获得10
26秒前
十九发布了新的文献求助30
26秒前
29秒前
钱多多发布了新的文献求助10
29秒前
Billy应助科研通管家采纳,获得30
31秒前
ice完成签到,获得积分20
31秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
青寻完成签到,获得积分10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834960
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498597
捐赠科研通 3096925
什么是DOI,文献DOI怎么找? 1705320
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772110