传质
对流
无量纲量
溶解
磁场
化学
磁化率
扩散
热磁对流
磁压力
热力学
凝聚态物理
分析化学(期刊)
磁化
结晶学
色谱法
物理
量子力学
物理化学
作者
Atsushi Sugiyama,Shigeyoshi MORISAKI,Ryoichi Aogaki
摘要
When an external magnetic field is vertically imposed on a solid–liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
科研通智能强力驱动
Strongly Powered by AbleSci AI