雅可比矩阵与行列式
运动学
引力奇点
反向动力学
反向
控制理论(社会学)
数学
职位(财务)
反问题
最小二乘函数近似
机器人末端执行器
应用数学
计算机科学
数学分析
几何学
机器人
物理
人工智能
经典力学
经济
估计员
统计
财务
控制(管理)
出处
期刊:IEEE Transactions on Systems, Man, and Cybernetics
[Institute of Electrical and Electronics Engineers]
日期:1986-01-01
卷期号:16 (1): 93-101
被引量:796
标识
DOI:10.1109/tsmc.1986.289285
摘要
Inverse kinematic solutions are used in manipulator controllers to determine corrective joint motions for errors in end-effector position and orientation. Previous formulations of these solutions, based on the Jacobian matrix, are inefficient and fail near kinematic singularities. Vector formulations of inverse kinematic problems are developed that lead to efficient computer algorithms. To overcome the difficulties encountered near kinematic singularities, the exact inverse problem is reformulated as a damped least-squares problem, which balances the error in the solution against the size of the solution. This yields useful results for all manipulator configurations.
科研通智能强力驱动
Strongly Powered by AbleSci AI