Multi-Modal Meta Multi-Task Learning for Social Media Rumor Detection

计算机科学 谣言 社会化媒体 任务(项目管理) 水准点(测量) 人工智能 机器学习 情态动词 万维网 经济 地理 高分子化学 管理 化学 大地测量学 公共关系 政治学
作者
Huaiwen Zhang,Shengsheng Qian,Quan Fang,Changsheng Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 1449-1459 被引量:57
标识
DOI:10.1109/tmm.2021.3065498
摘要

With the rapid development of social media platforms and the increasing scale of the social media data, the rumor detection task has become vitally important since the authenticity of posts cannot be guaranteed. To date, Many approaches have been proposed to facilitate the rumor detection process by utilizing the multi-task learning mechanism, which aims to improve the performance of rumor detection task by leveraging the useful information in the stance detection task. However, most of the existing approaches suffer from three limitations: (1) only focus on the textual content and ignore the multi-modal information which is key component contained in social media data; (2) ignore the difference of feature space between the stance detection task and rumor detection task, resulting in the unsatisfactory usage of stance information; (3) largely neglect the semantic information hidden in the fine-grained stance labels. Therefore, in this paper, we design a Multi-modal Meta Multi-Task Learning (MM-MTL) framework for social media rumor detection. To make use of multiple modalities, we design a multi-modal post embedding layer which considers both textual and visual content. To overcome the feature-sharing problem of the stance detection task and rumor detection task, we propose a meta knowledge-sharing scheme to share some higher meta network-layers and capture the meta knowledge behind the multi-modal post. To better utilize the semantic information hidden in the fine-grained stance labels, we employ the attention mechanism to estimate the weight of each reply. Extensive experiments on two Twitter benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮向雁完成签到 ,获得积分10
刚刚
波波仔完成签到,获得积分20
1秒前
水水完成签到,获得积分10
2秒前
无花果应助wqw采纳,获得10
3秒前
5秒前
OIC完成签到,获得积分10
6秒前
xzy998应助Rainlistener采纳,获得10
6秒前
8秒前
8秒前
zw完成签到,获得积分10
8秒前
科研通AI5应助LuoYR@SZU采纳,获得10
9秒前
9秒前
SYLH应助橙子采纳,获得10
11秒前
Djnsbj发布了新的文献求助10
12秒前
王哥完成签到,获得积分20
12秒前
shinble发布了新的文献求助20
13秒前
阿甲发布了新的文献求助10
14秒前
二丫完成签到,获得积分10
16秒前
18秒前
风轻云淡发布了新的文献求助20
18秒前
酸梅完成签到,获得积分10
19秒前
21秒前
22秒前
知来者发布了新的文献求助10
26秒前
酷炫的尔丝完成签到 ,获得积分10
26秒前
龙雾完成签到,获得积分10
26秒前
笨小孩完成签到,获得积分10
28秒前
梦梦完成签到 ,获得积分10
28秒前
Lucas应助风轻云淡采纳,获得10
28秒前
阿甲完成签到,获得积分10
28秒前
研友_8Raw2Z发布了新的文献求助10
28秒前
29秒前
李亚宁发布了新的文献求助10
29秒前
温暖哈密瓜完成签到 ,获得积分10
30秒前
30秒前
爆米花应助aliu采纳,获得10
30秒前
秦嘉旎完成签到,获得积分10
30秒前
31秒前
wj发布了新的文献求助10
32秒前
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867