亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Entropy Alloys Properties Prediction Model by Using Artificial Neural Network Algorithm

人工神经网络 摩尔分数 均方误差 回归分析 回归 线性回归 高熵合金 微观结构 熵(时间箭头) 材料科学 预测建模 产量(工程) 近似误差 算法 分数(化学) 热力学 计算机科学 数学 机器学习 统计 化学 冶金 物理 有机化学
作者
Sanggyu Choi,Sung Yi,Jung-Han Kim,Byung-Sue Shin,Soong‐Keun Hyun
出处
期刊:Metals [Multidisciplinary Digital Publishing Institute]
卷期号:11 (10): 1559-1559 被引量:3
标识
DOI:10.3390/met11101559
摘要

A new approach method has been studied for the efficient and accurate prediction of high-entropy alloys (HEAs) properties. The artificial neural network (ANN) algorithm was employed to predict the mechanical properties such as yield strength, microstructure, and elongation of the alloy by training from the mole fraction and post-process information that has an influence on the mechanical properties. The mean error rate of prediction for the yield strength was 19.6%. Microstructure predictions were consistent for all test data. On the other hand, the ANN model trained only with mole fraction data had a yield strength prediction error of 33.9%. Omission of post-process data caused a decrease in the accuracy. In addition, the prediction was performed with the lasso regression model in the same way. The mean error rate of the lasso model trained with only a mole fraction was 26.1%. The lasso model trained with a mole fraction and post-process data had a yield strength prediction error of 31.1%. The linear regression equation showed limitations, as the accuracy decreased as the number of independent variables increased. As there are more variables affecting metal properties, the ANN approach is more advantageous, and the more data there are, the more accuracy increases, making it possible to design HEAs alloys that are simpler and more efficient than conventional methods. This approach predicted HEAs properties using only mole fraction and post-processing information, without the need to use conventional physicochemical theories or perform derived complex calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
14秒前
38秒前
vagary完成签到,获得积分10
41秒前
123发布了新的文献求助10
49秒前
1分钟前
123发布了新的文献求助10
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
嘿嘿应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
1分钟前
清爽的机器猫完成签到 ,获得积分10
1分钟前
123发布了新的文献求助10
2分钟前
2分钟前
level完成签到 ,获得积分10
2分钟前
2分钟前
璐璐鸭发布了新的文献求助10
2分钟前
123发布了新的文献求助10
2分钟前
3分钟前
鉴定为学计算学的完成签到,获得积分10
3分钟前
xavier完成签到,获得积分20
3分钟前
3分钟前
嘿嘿应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
mengliu完成签到,获得积分10
3分钟前
123发布了新的文献求助10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
嘿嘿应助xavier采纳,获得10
3分钟前
科研通AI5应助车哥爱学习采纳,获得10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
123发布了新的文献求助10
4分钟前
123发布了新的文献求助10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060879
求助须知:如何正确求助?哪些是违规求助? 3599390
关于积分的说明 11432156
捐赠科研通 3323465
什么是DOI,文献DOI怎么找? 1827271
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699