Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:22
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助Liu采纳,获得30
1秒前
嘚嘚发布了新的文献求助10
1秒前
从容乌完成签到 ,获得积分10
1秒前
标致冬日完成签到,获得积分10
1秒前
研友_VZG7GZ应助lala采纳,获得10
1秒前
阳枝甘禄发布了新的文献求助10
1秒前
2秒前
行者完成签到,获得积分10
2秒前
2秒前
wyt发布了新的文献求助10
2秒前
kingwill应助rrrrrr采纳,获得20
2秒前
子非我完成签到,获得积分10
2秒前
谦让的梦山完成签到,获得积分10
2秒前
科研通AI5应助li采纳,获得10
3秒前
科研通AI5应助怡然的天思采纳,获得10
3秒前
wxyaaa完成签到,获得积分10
3秒前
李泽完成签到,获得积分10
3秒前
想人陪的以云完成签到,获得积分10
4秒前
5秒前
cc发布了新的文献求助10
5秒前
ccl发布了新的文献求助10
6秒前
bkagyin应助秦亦云采纳,获得10
7秒前
7秒前
侧耳倾听发布了新的文献求助10
7秒前
wxyaaa发布了新的文献求助10
7秒前
贺知书发布了新的文献求助10
7秒前
wcwzcz完成签到,获得积分10
7秒前
万能图书馆应助yaozifiona采纳,获得50
8秒前
Pumpkin应助难受的难受采纳,获得10
8秒前
Mannose完成签到,获得积分10
9秒前
9秒前
SciGPT应助傲娇白玉采纳,获得20
10秒前
赘婿应助happy采纳,获得10
11秒前
11秒前
搜集达人应助Wdw2236采纳,获得10
11秒前
11秒前
12秒前
12秒前
自信薯片关注了科研通微信公众号
12秒前
Orange应助ccl采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621