Machine learning predicts 3D printing performance of over 900 drug delivery systems

工作流程 计算机科学 管道(软件) 机器学习 人工智能 人工神经网络 挤压 3D打印 过程(计算) 药物输送 纳米技术 材料科学 工程类 机械工程 数据库 操作系统 冶金 程序设计语言
作者
Brais Muñiz Castro,Moe Elbadawi,Jun Jie Ong,Thomas D. Pollard,Zhe Song,Simon Gaisford,Gilberto Pérez,Abdul W. Basit,Pedro Cabalar,Álvaro Goyanes
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:337: 530-545 被引量:121
标识
DOI:10.1016/j.jconrel.2021.07.046
摘要

Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Ive采纳,获得10
1秒前
1秒前
两栖玩家完成签到 ,获得积分10
2秒前
4秒前
长安发布了新的文献求助10
5秒前
6秒前
7秒前
能干大树完成签到,获得积分10
7秒前
负责御姐发布了新的文献求助20
8秒前
8秒前
10秒前
10秒前
坚定若冰完成签到,获得积分10
10秒前
miaomiao发布了新的文献求助10
11秒前
11秒前
鱼梓发布了新的文献求助20
13秒前
楼一笑完成签到,获得积分10
13秒前
雨忠发布了新的文献求助10
13秒前
爱学习的婷完成签到 ,获得积分10
14秒前
FashionBoy应助长安采纳,获得10
14秒前
星河完成签到,获得积分10
15秒前
左旋多巴完成签到,获得积分10
15秒前
星辰大海应助ar采纳,获得10
16秒前
清晨的小鹿完成签到,获得积分10
17秒前
子子子子瞻完成签到,获得积分10
17秒前
Hean完成签到 ,获得积分10
20秒前
所所应助正在通话中采纳,获得10
20秒前
blUe完成签到,获得积分10
20秒前
CodeCraft应助Benhnhk21采纳,获得30
20秒前
21秒前
ljljljlj完成签到,获得积分10
22秒前
负责御姐完成签到,获得积分10
23秒前
23秒前
Durant完成签到,获得积分10
24秒前
勤奋幻柏发布了新的文献求助20
27秒前
ar完成签到,获得积分20
28秒前
29秒前
研友_Z30GJ8完成签到,获得积分0
29秒前
wwmmyy发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846629
求助须知:如何正确求助?哪些是违规求助? 3389156
关于积分的说明 10555825
捐赠科研通 3109528
什么是DOI,文献DOI怎么找? 1713737
邀请新用户注册赠送积分活动 824915
科研通“疑难数据库(出版商)”最低求助积分说明 775132