Adaptive traffic signal control system using composite reward architecture based deep reinforcement learning

强化学习 钢筋 建筑 计算机科学 交通信号灯 信号(编程语言) 复合数 控制(管理) 人工智能 控制工程 工程类 实时计算 结构工程 地理 程序设计语言 考古 算法
作者
Abu Rafe Md Jamil,Kishan Kumar Ganguly,Naushin Nower
出处
期刊:Iet Intelligent Transport Systems [Institution of Engineering and Technology]
卷期号:14 (14): 2030-2041 被引量:24
标识
DOI:10.1049/iet-its.2020.0443
摘要

The increasing traffic congestion problem can be solved by an adaptive traffic signal control (ATSC) system as it utilises real‐time traffic information to control traffic signals. Recently, deep reinforcement learning (DRL) has shown its potential in solving the traffic signal timing. However, one of the main challenges of DRL is to design a proper reward function and special attention needs for a multi‐objective reward design. Since the feedback to the agent depends on the reward function, a proper design of reward function is needed for fast and stable learning. In this study, the authors proposed a new reward architecture called composite reward architecture (CRA) for multi‐objective ATSC to optimise multiple objectives. It calculates multiple rewards in parallel for each action and applies the majority voting method to choose the desired action. Since the traffic signal of one intersection affects the adjacent intersections, a new coordination approach is proposed to get the overall smooth traffic flow. The proposed reward architecture CRA is compared with several existing reward functions used in the literature for different traffic scenarios. The new coordinated approach is compared with the non‐coordinated approach. The authors demonstrated that the proposed approaches outperform the others concerning waiting time, halting the number of vehicles, and so on.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术laji发布了新的文献求助10
刚刚
刚刚
aji完成签到,获得积分20
2秒前
科研通AI5应助江峰采纳,获得10
2秒前
开放怀亦完成签到,获得积分10
2秒前
好好学习完成签到,获得积分10
3秒前
jpp完成签到,获得积分10
4秒前
wangmiao12完成签到,获得积分10
4秒前
5秒前
悦耳驳回了陈雷应助
5秒前
如沐春风发布了新的文献求助10
5秒前
科研通AI5应助xx采纳,获得10
5秒前
wzx完成签到,获得积分10
6秒前
兴奋的万声完成签到,获得积分10
6秒前
小蛇玩完成签到,获得积分10
6秒前
7秒前
7秒前
jin发布了新的文献求助20
8秒前
吧胡椒完成签到,获得积分10
9秒前
共产主义战士完成签到,获得积分10
9秒前
谈笑间应助垃圾车采纳,获得10
10秒前
帕尼灬尼发布了新的文献求助10
10秒前
斌bin完成签到,获得积分10
10秒前
11秒前
脑洞疼应助塔克拉玛干000采纳,获得10
11秒前
12秒前
小涵发布了新的文献求助10
12秒前
yang_keai完成签到,获得积分10
13秒前
xun完成签到,获得积分20
14秒前
乐乐应助达叔采纳,获得10
15秒前
15秒前
科研通AI2S应助Litianxue采纳,获得10
15秒前
15秒前
88就是發完成签到 ,获得积分10
17秒前
sun0115发布了新的文献求助30
19秒前
20秒前
乐乐应助峡星牙采纳,获得10
20秒前
马马马发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345059
关于积分的说明 10323271
捐赠科研通 3061547
什么是DOI,文献DOI怎么找? 1680447
邀请新用户注册赠送积分活动 807069
科研通“疑难数据库(出版商)”最低求助积分说明 763462