3D-CNN-SPP: A Patient Risk Prediction System From Electronic Health Records via 3D CNN and Spatial Pyramid Pooling

联营 棱锥(几何) 卷积神经网络 计算机科学 深度学习 人工智能 机器学习 数据挖掘 模式识别(心理学) 光学 物理
作者
Ronghui Ju,Pan Zhou,Shiping Wen,Wei Wei,Yuan Xue,Xiaolei Huang,Xin Yang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:5 (2): 247-261 被引量:23
标识
DOI:10.1109/tetci.2019.2960474
摘要

The problem of extracting useful clinical representations from longitudinal electronic health record (EHR) data, also known as the computational phenotyping problem, is an important yet challenging task in the health-care academia and industry. Recent progress in the design and applications of deep learning methods has shown promising results towards solving this problem. In this paper, we propose 3D-CNN-SPP (3D Convolutional Neural Networks and Spatial Pyramid Pooling), a novel patient risk prediction system, to investigate the application of deep neural networks in modeling longitudinal EHR data. Particularly, we propose a 3D CNN structure, which is featured by SPP. Compared with 2D CNN methods, our proposed method can capture the complex relationships in EHRs more effectively and efficiently. Furthermore, previous works handle the issue of variable length in patient records by padding zeros to all vectors so that they have a fixed length. In our work, the proposed spatial pyramid pooling divides the records into several length sections for respective pooling processing, hence handling the variable length problem easily and naturally. We take heart failure and diabetes as examples to test the performance of the system, and the experiment results demonstrate great effectiveness in patient risk prediction, compared with several strong baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Woo完成签到 ,获得积分10
刚刚
奈何桥上抬花轿完成签到,获得积分20
刚刚
旺旺小仙完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
皮念寒完成签到,获得积分10
4秒前
念波发布了新的文献求助10
5秒前
可可发布了新的文献求助10
7秒前
7秒前
薛晓博发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
JamesPei应助wenwenerya采纳,获得10
10秒前
10秒前
不再褪色完成签到,获得积分10
10秒前
10秒前
小二郎应助尛森采纳,获得10
11秒前
阮轻枝关注了科研通微信公众号
11秒前
wwww完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助可可采纳,获得10
12秒前
我爱Chem发布了新的文献求助10
14秒前
爆米花应助怕孤独的修杰采纳,获得10
15秒前
今后应助活泼的觅云采纳,获得10
15秒前
charolte发布了新的文献求助10
15秒前
Ava应助陶渊明采纳,获得30
15秒前
superdong发布了新的文献求助10
16秒前
上官若男应助晴语采纳,获得10
17秒前
念波完成签到,获得积分10
17秒前
龙腾岁月发布了新的文献求助20
17秒前
绿绿发布了新的文献求助10
17秒前
梅子完成签到 ,获得积分10
18秒前
原味鸡完成签到,获得积分10
18秒前
20秒前
武雨寒发布了新的文献求助10
21秒前
wuming完成签到,获得积分10
21秒前
22秒前
思源应助XXH采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572