A Two-Stage Fall Recognition Algorithm Based on Human Posture Features

支持向量机 人工智能 随机森林 计算机科学 模式识别(心理学) 决策树 可解释性 理论(学习稳定性) 特征(语言学) 预处理器 机器学习 算法 语言学 哲学
作者
Kun Han,Qiongqian Yang,Zefan Huang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:20 (23): 6966-6966 被引量:20
标识
DOI:10.3390/s20236966
摘要

Falls are seriously threatening the health of elderly. In order to reduce the potential danger caused by falls, this paper proposes a two-stage fall recognition algorithm based on human posture features. For preprocessing, we construct the new key features: deflection angles and spine ratio to describe the changes of human posture based on the human skeleton extracted by OpenPose. In the first stage, based on the variables: tendency symbol and steady symbol integrated by the scattered key features, we divide the human body state into three states: stable state, fluctuating state, and disordered state. By analyzing whether the body is in a stable state, the ADL (activities of daily living) actions with high stability can be preliminarily excluded. In the second stage: to further identify the confusing ADL actions and the fall actions, we innovatively design a time-continuous recognition algorithm. When human body is constantly in an unstable state, the human posture features: compare value γ, energy value ε, state score τ are proposed to form a feature vector, and support vector machine (SVM), K nearest neighbors (KNN), decision tree (DT), random forest (RF) are utilized for classification. Experiment results demonstrate that SVM with linear kernel function can distinguish falling actions best and our approach achieved a detection accuracy of 97.34%, precision of 98.50%, and the recall, F1 score are 97.33%, 97.91% respectively. Compared with previous state-of-art algorithms, our algorithm can achieve the highest recognition accuracy. It proves that our fall detection method is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQL发布了新的文献求助30
1秒前
shutup发布了新的文献求助10
1秒前
冰魂应助哆啦顺利毕业采纳,获得20
2秒前
8秒前
Ava应助Zyra采纳,获得10
12秒前
12秒前
Rener完成签到,获得积分10
13秒前
13秒前
点点完成签到 ,获得积分10
14秒前
15秒前
17秒前
18秒前
丘比特应助静香采纳,获得10
18秒前
寻风发布了新的文献求助10
20秒前
20秒前
酷波er应助外向语蝶采纳,获得10
21秒前
21秒前
星星完成签到,获得积分10
22秒前
23秒前
深情安青应助sharon采纳,获得10
24秒前
25秒前
啦啦啦发布了新的文献求助10
25秒前
林小昀完成签到 ,获得积分10
26秒前
fransiccarey完成签到,获得积分10
26秒前
zhounan发布了新的文献求助10
27秒前
27秒前
27秒前
YJYELF完成签到,获得积分10
28秒前
29秒前
30秒前
caicai完成签到,获得积分20
30秒前
YJYELF发布了新的文献求助10
33秒前
caicai发布了新的文献求助10
33秒前
12345发布了新的文献求助10
34秒前
科目三应助科研通管家采纳,获得10
34秒前
田様应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
静香发布了新的文献求助10
35秒前
SciGPT应助科研通管家采纳,获得10
35秒前
所所应助科研通管家采纳,获得10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800230
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325664
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547