已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online available bandwidth estimation using multiclass supervised learning techniques

计算机科学 人工智能 机器学习 半监督学习 多类分类 监督学习 支持向量机 在线学习 在线算法 分类器(UML)
作者
Sukhpreet Kaur Khangura,Sami Akin
出处
期刊:Computer Communications [Elsevier BV]
卷期号:170: 177-189 被引量:1
标识
DOI:10.1016/j.comcom.2021.02.009
摘要

Abstract In order to answer how much bandwidth is available to an application from one end to another in a network, state-of-the-art estimation techniques, based on active probing, inject artificial traffic with a known structure into the network. At the receiving end, the available bandwidth is estimated by measuring the structural changes in the injected traffic, which are caused by the network path. However, bandwidth estimation becomes difficult when packet distributions are distorted by non-fluid bursty cross traffic and multiple links. This eventually leads to an estimation bias. One known approach to reduce the bias in bandwidth estimations is to probe a network with constant-rate packet trains and measure the average structural changes in them. However, one cannot increase the number of packet trains in a designated time period as much as needed because high probing intensity overloads the network and results in packet losses in probe and cross traffic, which distorts probe packet gaps and inflicts more bias. In this work, we propose a machine learning-based, particularly classification-based, method that provides reliable estimates utilizing fewer packet trains. Then, we implement supervised learning techniques. Furthermore, considering the correlated changes over time in traffic in a network, we apply filtering techniques on estimation results in order to track the changes in the available bandwidth. We set up an experimental testbed using the Emulab software and a dumbbell topology in order to create training and testing data for performance analysis. Our results reveal that our proposed method identifies the available bandwidth significantly well in single-link networks as well as networks with heavy cross traffic burstiness and multiple links. It is also able to estimate the available bandwidth in randomly generated networks where the network capacity and the cross traffic intensity vary substantially. We also compare our technique with the others that use direct probing and regression approaches, and show that ours has better performance in terms of standard deviation around the actual bandwidth values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
superfatcat完成签到,获得积分10
1秒前
似我发布了新的文献求助10
2秒前
丸子完成签到 ,获得积分10
3秒前
qingzx发布了新的文献求助10
3秒前
研友_VZG7GZ应助倔驴采纳,获得10
4秒前
小柚子完成签到 ,获得积分10
4秒前
Swilder完成签到 ,获得积分10
4秒前
研友_8WEa2n发布了新的文献求助10
5秒前
Camellia413完成签到,获得积分10
6秒前
6秒前
22完成签到 ,获得积分10
7秒前
12秒前
慕青应助沉眠猫猫虫采纳,获得10
13秒前
JamesPei应助qingzx采纳,获得30
15秒前
赘婿应助zqz采纳,获得10
15秒前
zhengyanan完成签到,获得积分20
16秒前
18秒前
19秒前
orixero应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
19秒前
似我完成签到,获得积分10
20秒前
wbh完成签到 ,获得积分10
21秒前
桥豆麻袋应助笨笨小熊猫采纳,获得10
24秒前
ldy539发布了新的文献求助10
24秒前
梨花雨凉1993完成签到,获得积分10
27秒前
28秒前
31秒前
狂野乌冬面完成签到 ,获得积分10
31秒前
lyy完成签到 ,获得积分10
33秒前
35秒前
zqz发布了新的文献求助10
36秒前
hyl发布了新的文献求助10
42秒前
翟zhai完成签到 ,获得积分20
44秒前
所所应助活力的柠檬采纳,获得10
44秒前
unbelievable完成签到,获得积分10
47秒前
江知之完成签到 ,获得积分0
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800790
求助须知:如何正确求助?哪些是违规求助? 3346316
关于积分的说明 10328814
捐赠科研通 3062761
什么是DOI,文献DOI怎么找? 1681170
邀请新用户注册赠送积分活动 807402
科研通“疑难数据库(出版商)”最低求助积分说明 763654