化学
面(心理学)
氧气
析氧
化学物理
物理化学
有机化学
电化学
电极
心理学
社会心理学
人格
五大性格特征
作者
Ananth Govind Rajan,John Mark P. Martirez,Emily A. Carter
摘要
β-Nickel oxyhydroxide (β-NiOOH) is a promising electrocatalyst for the oxygen evolution reaction (OER), which is the more difficult half-reaction involved in water splitting. In this study, we revisit the OER activities of the two most abundant crystallographic facets of pristine β-NiOOH, the (0001) and (1010) facets, which expose 6-fold-lattice-oxygen-coordinated and 5-fold-lattice-oxygen-coordinated Ni sites, respectively. To this end, we model various active sites on these two facets using hybrid density functional theory, which includes a fraction of the exact nonlocal Fock exchange in the electronic description of the system. By evaluating thermodynamic OER overpotentials, we show that the two active sites considered on each crystallographic facet demonstrate OER activities remarkably different from each other. However, the lowest OER overpotentials calculated for the two facets were found to be similar to each other and comparable to the overpotential for the 4-fold-lattice-oxygen-coordinated Ni site on the (1211) facet of β-NiOOH previously examined in J. Am. Chem. Soc. 2019, 141, 1, 693–705. This finding shows that all of the low-index facets investigated so far could be responsible for the experimentally observed OER activity of pristine β-NiOOH. However, the lowest overpotential active sites on these three crystallographic facets operate via different mechanisms, underscoring the importance of considering multiple OER pathways and intermediates on each crystallographic facet of a potential electrocatalyst. Specifically, our work demonstrates that consideration of previously overlooked active sites, transition-metal-ion oxidation states, reaction intermediates, and lattice-oxygen-stabilization are critical to reveal the lowest overpotential OER pathways on pristine β-NiOOH.
科研通智能强力驱动
Strongly Powered by AbleSci AI