已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for Multilabel Remote Sensing Image Annotation With Dual-Level Semantic Concepts

计算机科学 人工智能 图像自动标注 判别式 图像检索 模式识别(心理学) 嵌入 卷积神经网络 特征(语言学) 注释 特征学习 上下文图像分类 相似性(几何) 深度学习 特征提取 图像(数学) 机器学习 哲学 语言学
作者
Panpan Zhu,Yumin Tan,Liqiang Zhang,Yuebin Wang,Jie Mei,Hao Liu,Mengfan Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (6): 4047-4060 被引量:39
标识
DOI:10.1109/tgrs.2019.2960466
摘要

Multilabel remote sensing (RS) image annotation is a challenging and time-consuming task that requires a considerable amount of expert knowledge. Most existing RS image annotation methods are based on handcrafted features and require multistage processes that are not sufficiently efficient and effective. An RS image can be assigned with a single label at the scene level to depict the overall understanding of the scene and with multiple labels at the object level to represent the major components. The multiple labels can be used as supervised information for annotation, whereas the single label can be used as additional information to exploit the scene-level similarity relationships. By exploiting the dual-level semantic concepts, we propose an end-to-end deep learning framework for object-level multilabel annotation of RS images. The proposed framework consists of a shared convolutional neural network for discriminative feature learning, a classification branch for multilabel annotation and an embedding branch for preserving the scene-level similarity relationships. In the classification branch, an attention mechanism is introduced to generate attention-aware features, and skip-layer connections are incorporated to combine information from multiple layers. The philosophy of the embedding branch is that images with the same scene-level semantic concepts should have similar visual representations. The proposed method adopts the binary cross-entropy loss for classification and the triplet loss for image embedding learning. The evaluations on three multilabel RS image data sets demonstrate the effectiveness and superiority of the proposed method in comparison with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chem-w发布了新的文献求助10
1秒前
咔叽麻完成签到,获得积分10
7秒前
7秒前
YBR完成签到 ,获得积分10
7秒前
顾矜应助自觉代亦采纳,获得10
10秒前
从容芮完成签到,获得积分0
10秒前
耍酷亦玉完成签到,获得积分10
11秒前
12秒前
snowpie完成签到 ,获得积分10
12秒前
AQI完成签到,获得积分10
13秒前
香蕉觅云应助陈小陈采纳,获得10
14秒前
llk完成签到 ,获得积分10
14秒前
xw完成签到,获得积分10
14秒前
16秒前
小聖完成签到 ,获得积分10
24秒前
25秒前
25秒前
cfplhys完成签到,获得积分10
26秒前
秋季发布了新的文献求助10
27秒前
myg123完成签到 ,获得积分10
27秒前
ixueyi完成签到,获得积分10
28秒前
鲸落完成签到,获得积分10
29秒前
克姑美完成签到 ,获得积分10
29秒前
tjnksy完成签到,获得积分10
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
田様应助chem-w采纳,获得10
31秒前
虞不斜完成签到 ,获得积分10
32秒前
33秒前
HEIKU应助科研通管家采纳,获得10
34秒前
HEIKU应助科研通管家采纳,获得10
34秒前
HEIKU应助科研通管家采纳,获得10
34秒前
HEIKU应助科研通管家采纳,获得10
34秒前
HEIKU应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得30
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
科研小牛完成签到,获得积分10
36秒前
StonesKing发布了新的文献求助10
39秒前
lj完成签到 ,获得积分10
40秒前
42秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3889219
求助须知:如何正确求助?哪些是违规求助? 3431468
关于积分的说明 10773835
捐赠科研通 3156443
什么是DOI,文献DOI怎么找? 1743120
邀请新用户注册赠送积分活动 841514
科研通“疑难数据库(出版商)”最低求助积分说明 785966