已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning of mammary gland distribution for architectural distortion detection in digital breast tomosynthesis

人工智能 计算机科学 Gabor滤波器 失真(音乐) 技术 光学(聚焦) 体素 趋同(经济学) 乳腺摄影术 深度学习 计算机视觉 乳腺癌 模式识别(心理学) 特征提取 癌症 医学 物理 计算机网络 带宽(计算) 放大器 经济 经济增长 内科学 光学
作者
Yue Li,Zilong He,Yao Lu,Xiangyuan Ma,Yanhui Guo,Zheng Xie,Genggeng Qin,Weimin Xu,Zeyuan Xu,Weiguo Chen,Haibin Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (3): 035028-035028 被引量:20
标识
DOI:10.1088/1361-6560/ab98d0
摘要

Computer aided detection (CADe) for breast lesions can provide an important reference for radiologists in breast cancer screening. Architectural distortion (AD) is a type of breast lesion that is difficult to detect. A majority of CADe methods focus on detecting the radial pattern, which is a main characteristic of typical ADs. However, a few atypical ADs do not exhibit such a pattern. To improve the performance of CADe for typical and atypical ADs, we propose a deep-learning-based model that used mammary gland distribution as prior information to detect ADs in digital breast tomosynthesis (DBT). First, information about gland distribution, including the Gabor magnitude, the Gabor orientation field, and a convergence map, were produced using a bank of Gabor filters and convergence measures. Then, this prior information and an original slice were input into a Faster R-CNN detection network to obtain the 2-D candidates for each slice. Finally, a 3-D aggregation scheme was employed to fuse these 2-D candidates as 3-D candidates for each DBT volume. Retrospectively, 64 typical AD volumes, 74 atypical AD volumes, and 127 normal volumes were collected. Six-fold cross-validation and mean true positive fraction (MTPF) were used to evaluate the model. Compared to an existing convergence-based model, our proposed model achieved an MTPF of 0.53 ± 0.04, 0.61 ± 0.05, and 0.45 ± 0.04 for all DBT volumes, typical + normal volumes, and atypical + normal volumes, respectively. These results were significantly better than those of 0.36 ± 0.03, 0.46 ± 0.04, and 0.28 ± 0.04 for a convergence-based model (p ≪ 0.01). These results indicate that employing the prior information of gland distribution and a deep learning method can improve the performance of CADe for AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助邪恶小天使采纳,获得10
1秒前
2秒前
hhhhhhhh发布了新的文献求助50
3秒前
3秒前
3秒前
喜悦豌豆发布了新的文献求助10
5秒前
西西发布了新的文献求助10
7秒前
Minos发布了新的文献求助20
8秒前
Candy2024完成签到 ,获得积分10
8秒前
星辰发布了新的文献求助20
10秒前
Magali应助轩儿采纳,获得30
11秒前
12秒前
西西完成签到,获得积分10
16秒前
lili发布了新的文献求助30
17秒前
好巧发布了新的文献求助10
17秒前
20秒前
葱饼完成签到 ,获得积分10
21秒前
22秒前
斯文败类应助LONG采纳,获得10
22秒前
23秒前
23秒前
24秒前
英俊的铭应助汤圆圆儿采纳,获得10
24秒前
Orange应助科研通管家采纳,获得10
25秒前
Progie应助科研通管家采纳,获得10
25秒前
MMMMM应助科研通管家采纳,获得30
26秒前
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得30
26秒前
26秒前
辰枫发布了新的文献求助10
27秒前
宋芽芽u完成签到 ,获得积分10
27秒前
28秒前
Linson发布了新的文献求助10
28秒前
灯灯发布了新的文献求助10
29秒前
29秒前
32秒前
顾矜应助奈奈泥采纳,获得10
32秒前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4293500
求助须知:如何正确求助?哪些是违规求助? 3819934
关于积分的说明 11961596
捐赠科研通 3463130
什么是DOI,文献DOI怎么找? 1899612
邀请新用户注册赠送积分活动 947859
科研通“疑难数据库(出版商)”最低求助积分说明 850512